Patents by Inventor Thierry F. Taunay

Thierry F. Taunay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9946014
    Abstract: An optical pedestal fiber is configured to be taperable to form a tapered fiber having a mode field diameter at the tapered end that differs from the mode field diameter at the untapered end in correspondence with the difference between the cladding diameter at the tapered end and the cladding diameter at the untapered end. A plurality of such pedestal fibers can be used to construct a tapered fiber bundle coupler that provides matching of both core pitch and mode field diameter between a plurality of input fibers and individual cores of a multicore fiber. Further, the tapered fiber bundle coupler can be constructed using a plurality of fibers, in which individual fibers are configured to have different effective refractive indices, thereby suppressing crosstalk therebetween.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 17, 2018
    Assignee: OFS FITEL, LLC
    Inventors: Kazi S. Abedin, Thierry F. Taunay, Man F. Yan, Benyuan Zhu
  • Patent number: 9513189
    Abstract: Apparatus and method of simultaneously measuring a parameter of a plurality of cores in at least one optical fiber. An input tester at a first end of the test fiber has a plurality of tester signal inputs with a geometry substantially matching at least a portion of the core geometry of the fiber. At least one test input signal source coupled to the plurality of tester signal inputs. A signal measuring device is alignable at a second end of the fiber to measure the output of the test input signal. The input tester may include a tapered multicore coupler or a laser having a shield with apertures disposable between the laser and the fiber. In the latter case, a lens may be disposed between the shield and the fiber to project light from the laser that passes through the apertures onto the end of the fiber.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: December 6, 2016
    Assignee: OFS FITEL, LLC
    Inventors: Xinli Jiang, Thierry F Taunay
  • Patent number: 9507084
    Abstract: Described is a general strategy of bend-compensated, single-mode LMA fibers extended into a regime with higher total index contrast and where a larger gradient is used to cancel the perturbation of a tighter anticipated bend.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: November 29, 2016
    Assignee: OFS FITEL, LLC
    Inventors: John M Fini, Jeffrey W Nicholson, Thierry F Taunay
  • Patent number: 9366810
    Abstract: The cladding absorption of single-mode, double-clad, gain-producing fibers is increased in fiber designs that includes a trench region disposed between the core and inner cladding regions. Increased cladding absorption is achieved while maintaining single-mode operation.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: June 14, 2016
    Assignee: OFS FITEL, LLC
    Inventor: Thierry F. Taunay
  • Patent number: 9366806
    Abstract: The cladding absorption of a single-mode, gain-producing fibers is increased in fiber designs that includes a trench region disposed between the core and inner cladding regions. Increased cladding absorption is achieved while maintaining single-mode operation.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: June 14, 2016
    Assignee: OFS FITEL, LLC
    Inventor: Thierry F. Taunay
  • Publication number: 20150372442
    Abstract: A tapered fiber bundle (TFB) with a brightness reduction (R) that is between 0 and approximately 0.65 (or 65%), where R=(1?(di/da)2), di is an ideal output diameter, and da is an actual output diameter. The TFB is optically coupled to a gain fiber with a mode field diameter (MFD) that is between approximately 13 micrometers and approximately 25 micrometers.
    Type: Application
    Filed: January 30, 2015
    Publication date: December 24, 2015
    Inventors: Hao Dong, William R Holland, Jerome C Porque, Sean Sullivan, Thierry F Taunay
  • Patent number: 9211681
    Abstract: Embodiments of the present invention generally relate to laser combiners, and more specifically, to all-fiber devices that combine optical laser power from multiple separate sources such as lasers or amplifiers. In one embodiment, a method of manufacturing a combiner device comprises: positioning an plurality of fibers into a bundle of fibers; drawing the bundle of fibers to create a tapered section, the tapered section having a first outer diameter at an input end, a second outer diameter at an output end, and a taper ratio of at least three; wherein at least one of the fibers of the bundle of fibers comprises an optical waveguide configured for propagating an optical mode from the input end to the output end, and wherein a mode field diameter of the optical mode at the input end is substantially the same as the mode field diameter at the output end.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: December 15, 2015
    Assignee: OFS FITEL, LLC
    Inventors: William R Holland, Thierry F Taunay
  • Publication number: 20150293300
    Abstract: Described is a general strategy of bend-compensated, single-mode LMA fibers extended into a regime with higher total index contrast and where a larger gradient is used to cancel the perturbation of a tighter anticipated bend.
    Type: Application
    Filed: June 10, 2014
    Publication date: October 15, 2015
    Applicant: OFS Fitel, LLC
    Inventors: John M. Fini, Jeffrey W. Nicholson, Thierry F. Taunay
  • Patent number: 9158066
    Abstract: An optical fiber includes a core region having a longitudinal axis. A cladding region surrounds the core region. The core region and cladding region are configured to support and guide the propagation of signal light in a fundamental transverse mode in the core region in the directions of the axis. The fiber has a bend-induced gradient of its equivalent index of refraction indicative of a loss in guidance of the mode. At least a portion of cladding region has a graded index of refraction opposite the bend-induced gradient. The cladding region is configured to have a substantially flat equivalent index in response to a bend of the optical fiber.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: October 13, 2015
    Assignee: OFS FITEL, LLC
    Inventors: John M Fini, James W Fleming, Jeffrey W Nicholson, Thierry F Taunay, Man Yan
  • Publication number: 20150260910
    Abstract: The cladding absorption of a single-mode, gain-producing fibers is increased in fiber designs that includes a trench region disposed between the core and inner cladding regions. Increased cladding absorption is achieved while maintaining single-mode operation.
    Type: Application
    Filed: August 27, 2013
    Publication date: September 17, 2015
    Inventor: Thierry F. Taunay
  • Patent number: 9093815
    Abstract: A rare earth doped optical fiber amplifier is configured to have an enlarged core region and a trench formed adjacent to the core, where at least an inner portion of the trench is also formed to include a rare earth dopant. The presence of the rare earth dopant in the inner region of the cladding minimizes transient power fluctuations within the amplifier as the number of optical signals being amplified changes. The addition of rare earth dopant to the cladding increases the overlap between the pump, signal and the rare earth ions and thus improves the gain efficiency for the optical signal. The relatively large core diameter increases the saturation power level of the rare earth dopant and decreases the transients present in the gain as the input signal power fluctuates.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: July 28, 2015
    Assignee: OFS Fitel, LLC
    Inventors: Soren Herstrom, Kwang S Kim, Bera Palsdottir, Gabriel Puc, Thierry F Taunay
  • Patent number: 8982452
    Abstract: A low-power “all-in-one” Yb/Raman optical fiber laser system includes a pump input, and a Yb/Raman resonator including a segment of integrated Yb/Raman fiber configured to provide both a ionic gain and Raman gain. A set of input gratings and output gratings define a series of reflector pairs that, together with the integrated Yb/Raman fiber, create a nested series of cavities that provide a stepwise transition from the input wavelength to a selected target output wavelength.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 17, 2015
    Assignee: OFS Fitel, LLC
    Inventors: Jeffrey W. Nicholson, Thierry F. Taunay
  • Patent number: 8903211
    Abstract: An optical fiber coupler connects transmission multicore optical fiber (TMCF) with an amplifier multicore optical fiber (AMCF) and a plurality of optical pump fibers. The coupler includes a plurality of signal cores extending between a multicore input endface and a coupler output endface, and a plurality of pump cores extending between a pump input and the coupler output endface. The multicore input endface is connectable to the TMCF, and the pump input is connectable to the optical pump fibers. Each pump core is paired with a corresponding signal core to form a core pair that is adiabatically tapered such that signal light carried by the signal core is combined with pump light carried by the pump core. The coupler output endface is connectable to the AMCF such that the combined light output of each core pair is provided as an input to a respective AMCF core.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: December 2, 2014
    Assignee: OFS Fitel, LLC
    Inventors: John M Fini, Thierry F Taunay, Man F Yan, Benyuan Zhu
  • Publication number: 20140334788
    Abstract: An optical fiber includes a core region having a longitudinal axis. A cladding region surrounds the core region. The core region and cladding region are configured to support and guide the propagation of signal light in a fundamental transverse mode in the core region in the directions of the axis. The fiber has a bend-induced gradient of its equivalent index of refraction indicative of a loss in guidance of the mode. At least a portion of cladding region has a graded index of refraction opposite the bend-induced gradient. The cladding region is configured to have a substantially flat equivalent index in response to a bend of the optical fiber.
    Type: Application
    Filed: December 14, 2012
    Publication date: November 13, 2014
    Applicant: OFS FITEL, LLC
    Inventors: John M. Fini, James W. Fleming, Jeffrey W. Nicholson, Thierry F. Taunay, Man Yan
  • Publication number: 20140212103
    Abstract: The cladding absorption of single-mode, double-clad, gain-producing fibers is increased in fiber designs that includes a trench region disposed between the core and inner cladding regions. Increased cladding absorption is achieved while maintaining single-mode operation.
    Type: Application
    Filed: August 27, 2013
    Publication date: July 31, 2014
    Inventor: Thierry F. Taunay
  • Patent number: 8737792
    Abstract: A multicore fiber comprises a plurality of cores extending along the length of a fiber body. Each of the cores is surrounded by a cladding. The plurality of cores and surrounding cladding provide respective index variations, so as to form a respective plurality of waveguides for conducting parallel data transmissions from a first end of the fiber to a second end. The plurality of cores has a cross-sectional geometry in which the plurality of cores is configured in a polygonal array, in which at least some of the cores are positioned at the vertices of the array. The polygonal array is configured such that neighboring cores in the array are separated from each other by a distance that is sufficient to prevent crosstalk therebetween.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 27, 2014
    Assignee: OFS Fitel, LLC
    Inventors: John M. Fini, Thierry F. Taunay, Man F. Yan, Benyuan Zhu
  • Patent number: 8725001
    Abstract: An optical data link includes first and second pluralities of transmission devices, at least one of which is configured as an array. A multichannel transmission link has a first end connected to the first plurality of transmission devices and a second end connected to the second plurality of transmission devices so as to form a plurality of parallel transmission channels therebetween. The multichannel transmission link includes a multicore fiber with a plurality of individual cores having a configuration matching the array configuration of the at least one plurality of transmission devices. The multicore fiber has an endface connected directly to the at least one plurality of transmission devices, with the individual cores of the multicore fiber aligned with respective devices in the at least one plurality of transmission devices. Further described are access networks and core networks incorporating a transmission link comprising at least one span of a multicore fiber.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: May 13, 2014
    Assignee: OFS Fitel, LLC
    Inventors: John M. Fini, Thierry F. Taunay, Man F. Yan, Benyuan Zhu
  • Publication number: 20140125971
    Abstract: Apparatus and method of simultaneously measuring a parameter of a plurality of cores in at least one optical fiber. An input tester at a first end of the test fiber has a plurality of tester signal inputs with a geometry substantially matching at least a portion of the core geometry of the fiber. At least one test input signal source coupled to the plurality of tester signal inputs. A signal measuring device is alignable at a second end of the fiber to measure the output of the test input signal. The input tester may include a tapered multicore coupler or a laser having a shield with apertures disposable between the laser and the fiber. In the latter case, a lens may be disposed between the shield and the fiber to project light from the laser that passes through the apertures onto the end of the fiber.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 8, 2014
    Applicant: OFS Fitel, LLC
    Inventors: Xinli Jiang, Thierry F. Taunay
  • Publication number: 20140119694
    Abstract: An optical pedestal fiber is configured to be taperable to form a tapered fiber having a mode field diameter at the tapered end that differs from the mode field diameter at the untapered end in correspondence with the difference between the cladding diameter at the tapered end and the cladding diameter at the untapered end. A plurality of such pedestal fibers can be used to construct a tapered fiber bundle coupler that provides matching of both core pitch and mode field diameter between a plurality of input fibers and individual cores of a multicore fiber. Further, the tapered fiber bundle coupler can be constructed using a plurality of fibers, in which individual fibers are configured to have different effective refractive indices, thereby suppressing crosstalk therebetween.
    Type: Application
    Filed: June 20, 2012
    Publication date: May 1, 2014
    Applicant: OFS Fitel, LLC
    Inventors: Kazi S Abedin, Thierry F. Taunay, Man F. Yan, Benyuan Zhu
  • Patent number: 8693088
    Abstract: An optical transmission and amplification system includes a multichannel transmission span with a length of a multicore transmission fiber having a plurality of individual transmission cores. A first tapered multicore coupler provides connectivity between the plurality of transmission cores of the multicore fiber and a respective plurality of individual transmission leads. A fiber amplifier is provided having a plurality of individual cores including at least one pump core and a plurality of amplifier core. A second tapered multicore coupler provides connectivity between the amplifier cores of the fiber amplifier and a respective plurality of amplifier leads, and between the at least one pump core and a respective pump lead.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: April 8, 2014
    Assignee: OFS Fitel, LLC
    Inventors: John M. Fini, Thierry F. Taunay, Man F. Yan, Benyuan Zhu