Patents by Inventor Thierry Lefevre

Thierry Lefevre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230021018
    Abstract: The invention provides a method for performing an assessment of a placenta. The method includes obtaining a 3D ultrasound image of a uterus (210) and segmenting the placenta (220). A 3D rendering (200) of the uterus is then generated, wherein the generating includes: identifying a position of the placenta within the uterus with respect to an anatomical structure such as the cervix (250); obtaining anatomical reference data relating to a potential risk associated with the position of the placenta within the uterus; and comparing the position of the placenta and the anatomical reference data. A 3D rendering of the uterus is generated that comprises a 3D rendering of the placenta, marked with an indicator that is altered based on the comparison of the position of the placenta and the anatomical reference data. The appearance of the indicator may vary according to e.g. risk type/severity.
    Type: Application
    Filed: December 8, 2020
    Publication date: January 19, 2023
    Inventors: Cybele Ciofolo-Veit, Laurence Rouet, Caroline Denise Francoise Raynaud, Thierry Lefevre
  • Patent number: 11341634
    Abstract: A computer implemented method is provided for processing a 3D fetal ultrasound image. A 3D fetal ultrasound image is obtained (either acquired or received from memory), and the spine is detected within the image. This enables a first reference axis to be defined. A second reference axis is defined perpendicular to the first reference axis, and the 3D fetal ultrasound image is updated (e.g. rotated in 3D space) using the first and second reference axes and an up/down (elevation) orientation detection. This provides a normalization of the orientation of the image, so that a machine learning approach is better able to identify landmarks within new images.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: May 24, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Caroline Denise Francoise Raynaud, Laurence Rouet, Cybèle Ciofolo-Veit, Thierry Lefevre, David Nigel Roundhill
  • Publication number: 20210345987
    Abstract: The invention provides an ultrasound imaging method for determining complementary views of interest based on an anomalous feature identified in a region of interest of an ultrasound image. The method includes obtaining an ultrasound image of a region of interest of a subject and identifying an anomalous feature within said region. The identified anomalous feature may then be used to determine one or more available complementary ultrasound images of interest of the subject. The one or more available complementary ultrasound images may then be displayed to a user and the complementary ultrasound views to be reviewed may then be selected by the user from the displayed available complementary ultrasound images.
    Type: Application
    Filed: September 29, 2019
    Publication date: November 11, 2021
    Inventors: Cybèle Ciofolo-Veit, Thierry Lefevre, Caroline Denise Francoise Raynaud, Laurence Rouet
  • Publication number: 20210338203
    Abstract: The invention provides a method for guiding the acquisition of an ultrasound image. A 3D ultrasound image is acquired by an ultrasound probe at a first position and an anatomical structure is identified within the 3D ultrasound image. A target imaging plane is estimated based on the identified anatomical structure and it is determined whether the target imaging plane is present within the 3D ultrasound image. If the target imaging plane is present, a displacement between a central plane of the 3D ultrasound image and the target plane is determined. If the displacement is below a predetermined threshold, the target imaging plane is extracted and if the displacement is above the predetermined threshold, an instruction to acquire a 3D ultrasound image with the ultrasound probe at a second position, different from the first position, is generated based on the displacement. The invention further provides a method for estimating a target imaging plane.
    Type: Application
    Filed: October 14, 2019
    Publication date: November 4, 2021
    Inventors: Laurence ROUET, Cybèle CIOFOLO-VEIT, Thierry LEFEVRE, Caroline Denise Francoise RAYNAUD, Cristian LORENZ, Tobias KLINDER, Nicole SCHADEWALDT, Alexander SCHMIDT-RICHBERG
  • Patent number: 11026658
    Abstract: The invention relates to a device (1) for positioning a marker (2) in a 3D ultrasonic image volume (3), a system for positioning a marker (2) in a 3D ultrasonic image volume (3), a method for positioning a marker (2) in a 3D ultrasonic image volume (3), a computer program element for controlling such device (1) for performing such method and a computer readable medium having stored such computer program element. The device (1) comprises an image provision unit (11), a marker unit (12) and a display unit (13). The image provision unit (11) is configured to provide a 3D ultrasonic image volume (3) showing an object (4). The marker unit (12) is configured to position a marker (2) in the 3D ultrasonic image volume (3). The display unit (13) is configured to display the 3D ultrasonic image volume (3) and the marker (2) in a first imaging view (31) in a first imaging plane and in a second imaging view (32) in a second, different imaging plane.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: June 8, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thierry Lefevre, Pascal Yves Francois Cathier, Cybele Ciofolo-Veit
  • Publication number: 20200234435
    Abstract: A computer implemented method is provided for processing a 3D fetal ultrasound image. A 3D fetal ultrasound image is obtained (either acquired or received from memory), and the spine is detected within the image. This enables a first reference axis to be defined. A second reference axis is defined perpendicular to the first reference axis, and the 3D fetal ultrasound image is updated (e.g. rotated in 3D space) using the first and second reference axes and an up/down (elevation) orientation detection. This provides a normalization of the orientation of the image, so that a machine learning approach is better able to identify landmarks within new images.
    Type: Application
    Filed: July 12, 2018
    Publication date: July 23, 2020
    Inventors: Caroline Denise Francoise Raynaud, Laurence Rouet, Cybèle Ciofolo-Veit, Thierry Lefevre, David Nigel Roundhill
  • Publication number: 20180021020
    Abstract: The invention relates to a device (1) for positioning a marker (2) in a 3D ultrasonic image volume (3), a system for positioning a marker (2) in a 3D ultrasonic image volume (3), a method for positioning a marker (2) in a 3D ultrasonic image volume (3), a computer program element for controlling such device (1) for performing such method and a computer readable medium having stored such computer program element. The device (1) comprises an image provision unit (11), a marker unit (12) and a display unit (13). The image provision unit (11) is configured to provide a 3D ultrasonic image volume (3) showing an object (4). The marker unit (12) is configured to position a marker (2) in the 3D ultrasonic image volume (3). The display unit (13) is configured to display the 3D ultrasonic image volume (3) and the marker (2) in a first imaging view (31) in a first imaging plane and in a second imaging view (32) in a second, different imaging plane.
    Type: Application
    Filed: February 3, 2016
    Publication date: January 25, 2018
    Inventors: THIERRY LEFEVRE, PASCAL YVES FRANCOIS CATHIER, CYBELE CIOFOLO-VEIT
  • Publication number: 20150377026
    Abstract: A wheel of a rotating machine for a fluid includes blades that project on the front surface thereof. On one portion of the front surface which is at least 70% of the diametrical range that defines the blade installation area, the front surface is tangential to a cone, the tip of which is pointed forward and the vertex angle of which is between 154° and 170°. A rotating machine and a turbocompressor that includes such a wheel are described.
    Type: Application
    Filed: February 20, 2014
    Publication date: December 31, 2015
    Applicant: THY ENGINEERING
    Inventor: Thierry Lefevre
  • Patent number: 8272834
    Abstract: A compressor housing for accommodating a compressor wheel comprises an inlet and an outlet, each being defined by a wall provided integrally with said compressor housing, wherein at least one acoustic damper element is disposed on the outside of at least one of said walls of the inlet and the outlet. Preferably, the acoustic damper element is integrally formed with the compressor housing by die casting. A compressor or a turbocharger can be equipped with the compressor housing.
    Type: Grant
    Filed: June 15, 2004
    Date of Patent: September 25, 2012
    Assignee: Honeywell International Inc.
    Inventor: Thierry Lefevre
  • Patent number: 7794213
    Abstract: An exemplary noise damper for a compressor of a turbocharger includes a compressor housing comprising a cavity substantially adjacent a gas flow surface of a conduit to a compressed gas outlet of the compressor housing and an insert that spans the cavity and forms a wall of the cavity where the wall includes one or more openings to the cavity to thereby allow acoustic energy to be damped by the cavity. Various other exemplary technologies are also disclosed.
    Type: Grant
    Filed: May 14, 2007
    Date of Patent: September 14, 2010
    Assignee: Honeywell International Inc.
    Inventors: Gladys Gaude, Thierry Lefévre
  • Publication number: 20080292449
    Abstract: A compressor housing for accommodating a compressor wheel comprises an inlet and an outlet, each being defined by a wall provided integrally with said compressor housing, wherein at least one acoustic damper element is disposed on the outside of at least one of said walls of the inlet and the outlet. Preferably, the acoustic damper element is integrally formed with the compressor housing by die casting. A compressor or a turbocharger can be equipped with the compressor housing.
    Type: Application
    Filed: June 15, 2004
    Publication date: November 27, 2008
    Inventor: Thierry Lefevre
  • Publication number: 20080286127
    Abstract: An exemplary noise damper for a compressor of a turbocharger includes a compressor housing comprising a cavity substantially adjacent a gas flow surface of a conduit to a compressed gas outlet of the compressor housing and an insert that spans the cavity and forms a wall of the cavity where the wall includes one or more openings to the cavity to thereby allow acoustic energy to be damped by the cavity. Various other exemplary technologies are also disclosed.
    Type: Application
    Filed: May 14, 2007
    Publication date: November 20, 2008
    Inventors: Gladys Gaude, Thierry Lefevre