Patents by Inventor Thomas A. Kerrick

Thomas A. Kerrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5374396
    Abstract: The concentration of non-volatile residue in a test solvent is determined by generating multiple liquid droplets from a liquid stream including the solvent and ultrapure water. The droplets are dried to form a stream of multiple particles of the non-volatile residue. A supply of ultrapure deionized water is caused to flow continuously toward a non-volatile residue monitor, at a constant fluid flow rate. Upstream of the residue monitor, a syringe is provided for intermittently injecting a test solvent into the fluid stream. In one case, the solvent is injected for several minutes at a constant flow rate substantially less than that of the ultrapure water. A mixing valve, downstream of the point of solvent introduction, causes turbulent flow to thoroughly mix the solvent and water. In an alternative approach, a syringe is used to instantaneously inject solvent in the form of bursts.
    Type: Grant
    Filed: May 5, 1992
    Date of Patent: December 20, 1994
    Assignee: TSI Incorporated
    Inventors: David B. Blackford, Thomas A. Kerrick, David S. Ensor, Elizabeth A. Hill
  • Patent number: 5351523
    Abstract: A system for determining the fractional capture efficiency of filters includes two filters having substantially the same capture efficiency connected in series. A steady, controlled flow of ultrapure water and a colloidal silica suspension is directed through both filters, with respective stages of the flow upstream of the upstream filter, between the filters and downstream of the downstream filter, directed to respective non-volatile residue monitors. Each residue monitor produces a digital output representing the non-volatile residue concentration at its respective stage. A microprocessor receives the digital outputs and generates respective residue values indicating residue concentration in parts per billion. The three residue values are used to characterize the residue by proportion of the colloidal silica suspension to other residue components, and to calculate filter capture efficiency with respect to the colloidal silica.
    Type: Grant
    Filed: January 21, 1993
    Date of Patent: October 4, 1994
    Assignee: TSI Incorporated
    Inventors: David B. Blackford, Thomas A. Kerrick, Georg Schurmann, Kevin T. Pate
  • Patent number: 5098657
    Abstract: An apparatus for measuring nonvolatile residue concentrations in liquid is disclosed. A plurality of fixed and adjustable flow restrictive elements are utilized and arranged in-line from a fluid supply source to provide a constant, pressure controlled flow of liquid to the measuring apparatus and allow for real-time measurements and optimal concentration detection. An atomizer atomizes the liquid into droplets which are dried to nonvolatile residue particles. The nonvolatile residue particle concentration is then determined utilizing an electrostatic aerosol detector. The invention further discloses apparatus for collecting a sample of nonvolatile residue for analysis and identification using a corona precipitator.
    Type: Grant
    Filed: August 7, 1989
    Date of Patent: March 24, 1992
    Assignee: TSI Incorporated
    Inventors: David B. Blackford, Frederic R. Quant, Thomas A. Kerrick, Gilmore J. Sem, Darrell D. Havir