Patents by Inventor Thomas A. Peyser

Thomas A. Peyser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210386336
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Applicant: ABBOTT DIABETES CARE INC.
    Inventors: Thomas A. Peyser, Adam Heller
  • Patent number: 11179069
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: November 23, 2021
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Patent number: 11166654
    Abstract: Method and device for outputting one or more signals associated with a monitored analyte level of an individual, the one or more signals including a substantially real time monitored analyte level and a rate of change information associated with the monitored analyte level, outputting a carbohydrate intake event indication, determining one or more data associated with one or more therapy information related to the monitored analyte level and the meal event indication, and outputting the determined one or more data over the outputted one or more signals associated with the monitored analyte level and the carbohydrate intake event indication are provided.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: November 9, 2021
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Thomas A. Peyser, Marc B. Taub, R. Curtis Jennewine, Timothy Christian Dunn, Kerstin Rebrin
  • Patent number: 11103165
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 19, 2021
    Date of Patent: August 31, 2021
    Assignee: ABBOTT DIABETES CARE INC.
    Inventors: Thomas A. Peyser, Adam Heller
  • Publication number: 20210251526
    Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
    Type: Application
    Filed: March 19, 2021
    Publication date: August 19, 2021
    Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Davis, Sebastian Böhm
  • Publication number: 20210251531
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Application
    Filed: April 22, 2021
    Publication date: August 19, 2021
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Publication number: 20210204842
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Application
    Filed: March 19, 2021
    Publication date: July 8, 2021
    Applicant: ABBOTT DIABETES CARE INC.
    Inventors: Thomas A. Peyser, Adam Heller
  • Publication number: 20210169384
    Abstract: Methods and Devices to monitor the level of at least one analyte are provided.
    Type: Application
    Filed: December 7, 2020
    Publication date: June 10, 2021
    Applicant: ABBOTT DIABETES CARE INC.
    Inventors: Marc Barry Taub, Jolyon Robert Bugler, Thomas A. Peyser
  • Patent number: 10987040
    Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: April 27, 2021
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Davis, Sebastian Böhm
  • Publication number: 20210085223
    Abstract: Devices, systems, and methods for providing more accurate and reliable sensor data and for detecting sensor failures. Two or more electrodes can be used to generate data, and the data can be subsequently compared by a processing module. Alternatively, one sensor can be used, and the data processed by two parallel algorithms to provide redundancy. Sensor performance, including sensor failures, can be identified. The user or system can then respond appropriately to the information related to sensor performance or failure.
    Type: Application
    Filed: December 1, 2020
    Publication date: March 25, 2021
    Inventors: Thomas A. Peyser, Naresh C. Bhavaraju, Leif N. Bowman, Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Peter C. Simpson
  • Patent number: 10952652
    Abstract: An analyte monitor includes a sensor, a sensor control unit, and a display unit. The sensor has, for example, a substrate, a recessed channel formed in the substrate, and conductive material disposed in the recessed channel to form a working electrode. The sensor control unit typically has a housing adapted for placement on skin and is adapted to receive a portion of an electrochemical sensor. The sensor control unit also includes two or more conductive contacts disposed on the housing and configured for coupling to two or more contact pads on the sensor. A transmitter is disposed in the housing and coupled to the plurality of conductive contacts for transmitting data obtained using the sensor. The display unit has a receiver for receiving data transmitted by the transmitter of the sensor control unit and a display coupled to the receiver for displaying an indication of a level of an analyte.
    Type: Grant
    Filed: March 18, 2019
    Date of Patent: March 23, 2021
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Thomas A. Peyser, Adam Heller
  • Publication number: 20210016002
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, a controller module, and optionally a single point glucose monitor are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Application
    Filed: September 30, 2020
    Publication date: January 21, 2021
    Inventor: Thomas A. Peyser
  • Patent number: 10881339
    Abstract: Devices, systems, and methods for providing more accurate and reliable sensor data and for detecting sensor failures. Two or more electrodes can be used to generate data, and the data can be subsequently compared by a processing module. Alternatively, one sensor can be used, and the data processed by two parallel algorithms to provide redundancy. Sensor performance, including sensor failures, can be identified. The user or system can then respond appropriately to the information related to sensor performance or failure.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: January 5, 2021
    Assignee: DexCom, Inc.
    Inventors: Thomas A. Peyser, Naresh C. Bhavaraju, Leif N. Bowman, Apurv Ullas Kamath, Aarthi Mahalingam, Jack Pryor, Peter C. Simpson
  • Patent number: 10856785
    Abstract: Methods and Devices to monitor the level of at least one analyte are provided.
    Type: Grant
    Filed: March 8, 2018
    Date of Patent: December 8, 2020
    Assignee: Abbott Diabetes Care Inc.
    Inventors: Marc Barry Taub, Jolyon Robert Bugler, Thomas A. Peyser
  • Patent number: 10821229
    Abstract: Systems and methods for integrating a continuous glucose sensor, including a receiver, a medicament delivery device, a controller module, and optionally a single point glucose monitor are provided. Integration may be manual, semi-automated and/or fully automated.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: November 3, 2020
    Assignee: DexCom, Inc.
    Inventor: Thomas A. Peyser
  • Patent number: 10687740
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: June 23, 2020
    Assignee: DexCom, Inc.
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Patent number: 10588557
    Abstract: Systems and methods for applying time-dependent algorithmic compensation functions to data output from a continuous analyte sensor. Some embodiments determine a time since sensor implantation and/or whether a newly initialized sensor has been used previously, for example, by initializing a sensor, acquiring sensor data, using the sensor, to measure an analyte level in the host's body over a first interval based on a first elapsed time since the sensor was implanted, determining whether the sensor has been previously used in a previous sensor session or the sensor is a new sensor, and upon determining the sensor is a new sensor, adjusting the acquired sensor data to compensate for sensor drift of the new sensor by applying a first set of time-dependent algorithmic functions to the sensor data associated with the first interval.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: March 17, 2020
    Assignee: DexCom, Inc.
    Inventors: Michael J. Estes, Stephen J. Vanslyke, Apurv Ullas Kamath, Thomas A. Peyser, Lucas Bohnett, Aarthi Mahalingam, Arturo Garcia, Peter C. Simpson, Anna Leigh Davis, Sebastian Böhm
  • Publication number: 20190350502
    Abstract: The present invention relates generally to systems and methods for processing, transmitting, and displaying data received from continuous analyte sensor, such as a glucose sensor. In some embodiments, the continuous analyte sensor system comprises a sensor electronics module that includes power saving features. One feature includes a low power measurement circuit that can be switched between a measurement mode and a low power mode, in which charging circuitry continues to apply power to electrodes of a sensor during the low power mode. In addition, the sensor electronics module can be switched between in a low power storage mode higher power operational mode via a switch. The switch can include a reed switch or optical switch, for example. A validation routine can also be implemented to ensure an interrupt signal sent from the switch is valid.
    Type: Application
    Filed: July 30, 2019
    Publication date: November 21, 2019
    Inventors: Sebastian Bohm, Mark Dervaes, Eric Johnson, Apurv Ullas Kamath, Shawn Larvenz, Jacob S. Leach, Phong Lieu, Aarthi Mahalingam, Tom Miller, Paul V. Neale, Jack Pryor, Thomas A. Peyser, Daiting Rong, Kenneth San Vicente, Mohammad Ali Shariati, Peter C. Simpson, Matthew Wightlin
  • Publication number: 20190298922
    Abstract: Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Application
    Filed: June 18, 2019
    Publication date: October 3, 2019
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Phil Mayou, Thomas A. Peyser, Apurv Ullas Kamath, Aarthi Mahalingam, Kevin Sayer, Thomas Hall, Michael Robert Mensinger, Hari Hampapuram, David Price, Jorge Valdes, Murrad Kazalbash
  • Patent number: 10369283
    Abstract: Methods and apparatus, including computer program products, are provided for processing analyte data. In some example implementations, a method may include generating glucose sensor data indicative of a host's glucose concentration using a glucose sensor; calculating a glycemic variability index (GVI) value based on the glucose sensor data; and providing output to a user responsive to the calculated glycemic variability index value. The GVI may be a ratio of a length of a line representative of the sensor data and an ideal length of the line. Related systems, methods, and articles of manufacture are also disclosed.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: August 6, 2019
    Assignee: DexCom, Inc.
    Inventors: Naresh C. Bhavaraju, Arturo Garcia, Phil Mayou, Thomas A. Peyser, Apurv Ullas Kamath, Aarthi Mahalingam, Kevin Sayer, Thomas Hall, Michael Robert Mensinger, Hari Hampapuram, David Price, Jorge Valdes, Murrad Kazalbash