Patents by Inventor Thomas C. Bonde

Thomas C. Bonde has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Publication number: 20230417233
    Abstract: Provided herein are articles of manufacture, systems, and methods employing a gas-deflector plate in low to ultra-high vacuum systems that use differential pumping (e.g., gas-target particle accelerators, mass spectrometers, and windowless delivery ports). In certain embodiments, the gas-deflector plate is configured to be positioned between higher and lower pressure regions in a pressurized system, wherein the gas-deflector plate has a channel therethrough shaped and/or angled such that jetting gas moving through the channel enters the lower pressure region at an angle offset from the vertical axis of the gas-deflector plate and/or the channel. In other embodiments, a jet-deflector component is employed such that the jetting gas strikes such jet-deflector component and is re-directed in another direction.
    Type: Application
    Filed: September 13, 2023
    Publication date: December 28, 2023
    Inventors: Arne V. Kobernik, Brandon A. Jackson, Thomas C. Bonde, Tye Gribb, Ross F. Radel
  • Patent number: 11795929
    Abstract: Provided herein are articles of manufacture, systems, and methods employing a gas-deflector plate in low to ultra-high vacuum systems that use differential pumping (e.g., gas-target particle accelerators, mass spectrometers, and windowless delivery ports). In certain embodiments, the gas-deflector plate is configured to be positioned between higher and lower pressure regions in a pressurized system, wherein the gas-deflector plate has a channel therethrough shaped and/or angled such that jetting gas moving through the channel enters the lower pressure region at an angle offset from the vertical axis of the gas-deflector plate and/or the channel. In other embodiments, a jet-deflector component is employed such that the jetting gas strikes such jet-deflector component and is re-directed in another direction.
    Type: Grant
    Filed: July 16, 2020
    Date of Patent: October 24, 2023
    Assignee: SHINE TECHNOLOGIES, LLC
    Inventors: Arne V. Kobernik, Brandon A Jackson, Thomas C. Bonde, Tye Gribb, Ross F. Radel
  • Publication number: 20230131279
    Abstract: A plow lift cushion assembly can include a housing with a top. The housing can define a chamber. A slider with a sled and a shaft extending from the sled can be included. The sled can be configured to translate within the chamber. The shaft can extend out of the top of the housing and can be configured to be coupled to a plow lift arm. A spring-cushion system can be positioned within the chamber and can extend between the top and the sled. A set of flanges can extend from the housing. The set of flanges can be configured to interface with a set of chains coupled to a plow frame.
    Type: Application
    Filed: October 21, 2021
    Publication date: April 27, 2023
    Inventors: James M. Windgassen, Thomas C. Bonde
  • Publication number: 20210017972
    Abstract: Provided herein are articles of manufacture, systems, and methods employing a gas-deflector plate in low to ultra-high vacuum systems that use differential pumping (e.g., gas-target particle accelerators, mass spectrometers, and windowless delivery ports). In certain embodiments, the gas-deflector plate is configured to be positioned between higher and lower pressure regions in a pressurized system, wherein the gas-deflector plate has a channel therethrough shaped and/or angled such that jetting gas moving through the channel enters the lower pressure region at an angle offset from the vertical axis of the gas-deflector plate and/or the channel. In other embodiments, a jet-deflector component is employed such that the jetting gas strikes such jet-deflector component and is re-directed in another direction.
    Type: Application
    Filed: July 16, 2020
    Publication date: January 21, 2021
    Inventors: Arne V. Kobernik, Brandon A Jackson, Thomas C. Bonde, Tye Gribb, Ross F. Radel
  • Patent number: 7470912
    Abstract: An instrument for checking quality of therapeutic x-ray and electron radiation provides modes optimized for both electrons and for photons obtained by physically flipping the unit to interpose the necessary build-up material between the radiation beam and contained detectors. The invention provides an improved method of constructing ionization detectors for improved energy discrimination using such detectors and wire-free operation.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: December 30, 2008
    Assignee: Standard Imaging, Inc.
    Inventors: Daniel G. Schmidt, Myles L. Sommerfeldt, Kevin L. DeFever, Thomas C. Bonde
  • Patent number: 7189975
    Abstract: An instrument for checking quality of therapeutic x-ray and electron radiation provides modes optimized for both electrons and for photons obtained by physically flipping the unit to interpose the necessary build-up material between the radiation beam and contained detectors. The invention provides an improved method of constructing ionization detectors for improved energy discrimination using such detectors and wire-free operation.
    Type: Grant
    Filed: February 9, 2004
    Date of Patent: March 13, 2007
    Assignee: Standard Imaging, Inc.
    Inventors: Daniel G. Schmidt, Myles L. Sommerfeldt, Kevin L. DeFever, Thomas C. Bonde