Patents by Inventor Thomas D. Linton

Thomas D. Linton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9911835
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: March 6, 2018
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, Jr., Ian A. Young, Kelin J. Kuhn
  • Publication number: 20170133493
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, JR., Ian A. Young, Kelin J. Kuhn
  • Patent number: 9583602
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: February 28, 2017
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, Jr., Ian A. Young, Kelin J. Kuhn
  • Patent number: 9523548
    Abstract: Methods, computer-readable media, and systems are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: December 20, 2016
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Michael T. Fox, Bruce E. Exely, Michael C. Mareschal, Thomas D. Linton
  • Publication number: 20160322480
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Application
    Filed: July 13, 2016
    Publication date: November 3, 2016
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, JR., Ian A. Young, Kelin J. Kuhn
  • Patent number: 9412872
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: August 9, 2016
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, Jr., Ian A. Young, Kelin J. Kuhn
  • Publication number: 20160047618
    Abstract: Methods, computer-readable media, and systems are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
    Type: Application
    Filed: May 27, 2015
    Publication date: February 18, 2016
    Applicant: DRS Sustainment Systems, Inc.
    Inventors: Michael T. Fox, Bruce E. Exely, Michael C. Mareschal, Thomas D. Linton
  • Patent number: 9243931
    Abstract: Methods, devices, and systems are presented for calibrating or otherwise correcting the pointing accuracy of a gimbal. Measurements of the actual planes of rotation of each of a gimbal's rotatable elements is made using an off-board measurement device, such as a coordinate measuring machine (CMM). The measurements from the off-board device can be combined with those from native, on-board gimbal sensors of the rotation angles at which the planes are tilted/pitched with respect to their nominal planes of rotation. Information representing the error vectors between the nominal and actual planes of rotation is stored and used for correcting the pointing accuracy of the gimbal. The corrected pointing vector of the gimbal can be combined with measurements from an inertial measurement unit (INU) and rangefinder in order to accurately determine a geographic target position to which the gimbal points.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: January 26, 2016
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Thomas D. Linton, Jeffrey S. Folmer, Jeffrey S. Fitzgerald
  • Patent number: 9121670
    Abstract: Methods, computer-readable media, and systems are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: September 1, 2015
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Michael T. Fox, Bruce E. Exely, Michael C. Mareschal, Thomas D. Linton
  • Patent number: 9074888
    Abstract: Methods, devices, and systems are presented for compensating for gyroscopic drift in a stabilized gimbal system mounted on a vehicle. When the vehicle is parked and the gimbal is not being commanded to move by an operator, encoders or resolvers of the gimbal stabilized system are read and periodically read thereafter. When the vehicle begins to move or the gimbal is commanded to move, the last periodic reading of the resolvers is used to determine the amount that the gimbal has moved during the rest period. A gyroscopic drift rate is computed by dividing the amount of angular movement by the time period between the readings, and the gyroscopic drift rate is used for corrections while the vehicle is moving or gimbal is commanded to move. Each time the vehicle stops, the gyroscopic drift rate is re-computed and updated. The gyroscope can be heated until the drift rate is constant with respect to temperature, further helping the calibration.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: July 7, 2015
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Thomas D. Linton, Michael T. Fox, Bruce E. Exely
  • Publication number: 20150153128
    Abstract: Methods, computer-readable media, and systems are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
    Type: Application
    Filed: August 7, 2014
    Publication date: June 4, 2015
    Applicant: DRS Sustainment Systems, Inc.
    Inventors: Michael T. Fox, Bruce E. Exely, Michael C. Mareschal, Thomas D. Linton
  • Publication number: 20150041847
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Application
    Filed: October 22, 2014
    Publication date: February 12, 2015
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, JR., Ian A. Young, Kelin J. Kuhn
  • Publication number: 20150025801
    Abstract: Methods, devices, and systems are presented for compensating for gyroscopic drift in a stabilized gimbal system mounted on a vehicle. When the vehicle is parked and the gimbal is not being commanded to move by an operator, encoders or resolvers of the gimbal stabilized system are read and periodically read thereafter. When the vehicle begins to move or the gimbal is commanded to move, the last periodic reading of the resolvers is used to determine the amount that the gimbal has moved during the rest period. A gyroscopic drift rate is computed by dividing the amount of angular movement by the time period between the readings, and the gyroscopic drift rate is used for corrections while the vehicle is moving or gimbal is commanded to move. Each time the vehicle stops, the gyroscopic drift rate is re-computed and updated. The gyroscope can be heated until the drift rate is constant with respect to temperature, further helping the calibration.
    Type: Application
    Filed: January 28, 2013
    Publication date: January 22, 2015
    Applicant: DRS Sustainment Systems, Inc.
    Inventors: Thomas D. Linton, Michael T. Fox, Bruce E. Exely
  • Patent number: 8890120
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: November 18, 2014
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, Jr., Ian A. Young, Kelin J. Kuhn
  • Publication number: 20140283675
    Abstract: Methods are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
    Type: Application
    Filed: November 30, 2012
    Publication date: September 25, 2014
    Applicant: DRS Sustainment Systems, Inc.
    Inventors: Michael T. Fox, Bruce E. Exely, Michael C. Mareschal, Thomas D. Linton
  • Patent number: 8833232
    Abstract: Methods are disclosed for controlling a turret assembly with two or more gimbaled, swivel assembly sub-systems, such as a gimbaled gun and a gimbaled electro-optical sensor. The turret can be automatically slewed in response to one of the swivel assemblies rotating. A user can switch turret modes reflecting a priority between the gimbaled sub-systems system so that one takes priority over the other(s) during a mission.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: September 16, 2014
    Assignee: DRS Sustainment Systems, Inc.
    Inventors: Michael T. Fox, Bruce E. Exely, Michael C. Mareschal, Thomas D. Linton
  • Publication number: 20140138744
    Abstract: Tunneling field effect transistors (TFETs) for CMOS architectures and approaches to fabricating N-type and P-type TFETs are described. For example, a tunneling field effect transistor (TFET) includes a homojunction active region disposed above a substrate. The homojunction active region includes a relaxed Ge or GeSn body having an undoped channel region therein. The homojunction active region also includes doped source and drain regions disposed in the relaxed Ge or GeSn body, on either side of the channel region. The TFET also includes a gate stack disposed on the channel region, between the source and drain regions. The gate stack includes a gate dielectric portion and gate electrode portion.
    Type: Application
    Filed: November 16, 2012
    Publication date: May 22, 2014
    Inventors: Roza Kotlyar, Stephen M. Cea, Gilbert Dewey, Benjamin Chu-Kung, Uygar E. Avci, Rafael Rios, Anurag Chaudhry, Thomas D. Linton, JR., Ian A. Young, Kelin J. Kuhn
  • Patent number: 6960517
    Abstract: A n-gate transistor, and method of forming such, including source/drain regions connected by a channel region and a gate electrode coupled to the channel region. The channel region has many angled edges protruding into the gate electrode. The many angled edges are to act as electrically conducting channel conduits between source/drain regions.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: November 1, 2005
    Assignee: Intel Corporation
    Inventors: Rafael Rios, Brian S. Doyle, Thomas D. Linton, Jr., Jack Kavalieros
  • Publication number: 20040262699
    Abstract: A n-gate transistor, and method of forming such, including source/drain regions connected by a channel region and a gate electrode coupled to the channel region. The channel region has many angled edges protruding into the gate electrode. The many angled edges are to act as electrically conducting channel conduits between source/drain regions.
    Type: Application
    Filed: June 30, 2003
    Publication date: December 30, 2004
    Inventors: Rafael Rios, Brian S. Doyle, Thomas D. Linton, Jack Kavalieros
  • Patent number: 6396235
    Abstract: A two axis (azimuth and elevation) stabilized common gimbal (SGC) for use on a wide variety of commercial vehicles and military vehicles which are employed in combat situations capable of stabilizing a payload of primary sensors and of mounting a secondary sensor payload that is independent of the moving axes. The SCG employs three gyroscopes, inertial angular rate feedback for providing gimbal control of two axes during slewing and stabilization. In addition the third (roll) gyroscope is used for performing automatic calibration and decoupling procedures. In this regard, the SCG provides an interface for the primary suite of sensors comprising one or more sensors having a common line-of-sight (LOS) and which are stabilized by electronics, actuators, and inertial sensors against vehicle motion in both azimuth and elevation.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: May 28, 2002
    Assignee: Engineered Support Systems, Inc.
    Inventors: Thomas W. Ellington, Bruce E. Exely, Jeffrey S. Folmer, William S. Lambros, Thomas D. Linton, John P. Buck, Jr., Russell R. Moning, Peter M. Ellis, Kenneth A. Roseman, James R. Marshall