Patents by Inventor Thomas Eriksson

Thomas Eriksson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11229961
    Abstract: A cutting insert and a shoulder milling tool are disclosed. The cutting insert includes a surface-wiping secondary cutting edge inclined in relation to a median plane of the cutting insert such that a distance to the median plane decreases in a direction toward a corner cutting edge. The corner cutting edge, as seen in a side view along the median plane and towards a main cutting edge, has a concave curve.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: January 25, 2022
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Thomas Eriksson, Jorgen Jansson Udd
  • Publication number: 20220008088
    Abstract: A drill bit for drilling a cavity or a recess into a skull, wherein the cavity or the recess is configured to receive an implantable fixture screw unit of a hearing aid system, is disclosed. The drill bit includes a first part including a drill tip with a first drill diameter, wherein the drill tip comprises a tip angle of between 137 degrees to 143 degrees along a longitudinal axis of the drill bit and wherein the drill tip comprises a back rake angle of between ?1 degree and +1 degree, in particular a back rake angle of substantially 0 degrees, a second part including a plurality of flute blades with a second drill diameter, wherein the second drill diameter is greater that the first drill diameter, and a transition part which is arranged between the first part and the second part and along the longitudinal axis, wherein the transition part includes a body clearance.
    Type: Application
    Filed: July 7, 2021
    Publication date: January 13, 2022
    Applicant: Oticon Medical A/S
    Inventors: Hanna PETERS, Emelie LAGER, Anton HEDSTRÖM, Martin JOHANSSON, Thomas ERIKSSON
  • Publication number: 20220006208
    Abstract: A condenser core for being positioned around a high voltage main electrical conductor, the condenser core including an electrically insulating body; a longitudinal through hole for accommodating the main electrical conductor; a plurality of electrically conductive foils encircling the through hole and being surrounded by the body such that each foil is insulated from any other of the foils; a potential electrical conductor for establishing an electrical connection between one of the foils and the main electrical conductor when the main electrical conductor is accommodated in the through hole; and a fastening device configured to mechanically connect the potential electrical conductor to the main electrical conductor when the main electrical conductor is accommodated in the through hole. A bushing, a high voltage application and a method of producing a bushing are also provided.
    Type: Application
    Filed: September 18, 2019
    Publication date: January 6, 2022
    Inventors: Björn Edberg, Thomas Eriksson, Peter Sjöberg
  • Patent number: 11211902
    Abstract: A linearization device (380) is disclosed, which is configured to determine pre-distortion parameters associated with a plurality of non-linear amplifiers (331, 332, 333, 334), each associated with a non-linear amplifier characteristic. The linearization device comprises determination circuitry (383), a first port (381) and a second port (382). The first port is configured to receive a plurality of channel coefficients indicative of channel characteristics of a plurality of communication paths (391, 392, 393, 394) between the plurality of non-linear amplifiers and a transmit observation receiver (370). The second port is configured to receive, from the transmit observation receiver, a sum of transmission signals generated by the plurality of non-linear amplifiers and transferred over the plurality of communication paths.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: December 28, 2021
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Ulf Gustavsson, Thomas Eriksson, Christian Fager
  • Publication number: 20210367564
    Abstract: A linearization device (380) is disclosed, which is configured to determine pre-distortion parameters associated with a plurality of non-linear amplifiers (331, 332, 333, 334). Each of the non-linear amplifiers is associated with one of a plurality of transmit antenna elements and with a non-linear transfer function defining an output of the non-linear amplifier based on an input of the non-linear amplifier and based on a reflection signal for the non-linear amplifier, resulting from mutual couplings among the plurality of transmit antenna elements. The linearization device comprises a first port (381), a second port (382), and determination circuitry (383). The first port is configured to receive a plurality of channel coefficients indicative of channel characteristics of a plurality of communication paths between the plurality of non-linear amplifiers and two or more transmit observation receivers (370, 371, 372).
    Type: Application
    Filed: January 24, 2018
    Publication date: November 25, 2021
    Inventors: Katharina Hausmair, Thomas Eriksson, Christian Fager, Ulf Gustavsson
  • Publication number: 20210349569
    Abstract: A sensor determining coordinates of a proximal object, including a one-dimensional array of alternating light emitters and detectors, including a plurality of light emitters projecting light along a detection plane, and a plurality of light detectors detecting reflections of the projected light, by a reflective object in the detection plane, and a plurality of lenses mounted and oriented relative to the emitters and the detectors such that the light detectors receive maximum intensity when light enters a corresponding lens at a first particular angle, whereby for each emitter-detector pair, light emitted by the emitter of that pair passes through one of the lenses and is reflected by the object back through one of the lenses to the detector of that pair when the object is located at one of a set of positions in the detection plane, that position being associated with that emitter-detector pair.
    Type: Application
    Filed: July 26, 2021
    Publication date: November 11, 2021
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Patent number: 11161187
    Abstract: A cutting insert for a shoulder milling tool has a trigonal shape and includes a first surface, a second surface, and a circumferential surface extending between the first surface and the second surface. The circumferential surface includes a countersunk circumferential waist portion. The circumferential surface has a first and a second clearance surface extending along a first and a second main cutting edge. Each of the first and second clearance surfaces forma a negative nominal clearance angle. Each of the first and second main cutting edges is arranged inside the countersunk circumferential waist portion, as seen in the view towards the first and second surfaces, respectively.
    Type: Grant
    Filed: November 10, 2017
    Date of Patent: November 2, 2021
    Assignee: SANDVIK INTELLECTUAL PROPERTY AB
    Inventors: Thomas Eriksson, Jorgen Jansson Udd
  • Patent number: 11073948
    Abstract: A modular proximity sensor including a plurality of sensor modules, each sensor module including a housing, lenses, light detectors, each detector positioned along the image plane of a respective lens so as to receive maximum light intensity when light enters the lens at a particular angle, light emitters, each emitter positioned in relation to a respective lens so as to project light into a detection zone, an activating unit synchronously co-activating each emitter with at least one of the detectors, and a calculating unit receiving detector outputs corresponding to amounts of projected light reflected by an object in the detection zone, and calculating a two-dimensional location of the object in the detection zone based on the detector outputs and the particular angle, wherein neighboring sensor modules monitor different detection zones, and a processor receiving outputs from each sensor module and mapping the object location in multiple detection zones over time.
    Type: Grant
    Filed: January 10, 2020
    Date of Patent: July 27, 2021
    Assignee: NEONODE INC.
    Inventors: Stefan Johannes Holmgren, Sairam Iyer, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Per Carl Sture Rosengren, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Björn Thomas Eriksson, Björn Alexander Jubner, Remo Behdasht, Simon Greger Fellin, Robin Kjell Åman, Joseph Shain
  • Publication number: 20210223906
    Abstract: An optical assembly including a reflectance-based sensor emitting light into a detection plane and detecting reflections of the emitted light, reflected by an object located in the detection plane, a light redirector positioned away from the sensor redirecting light emitted by the sensor into one or more spatial planes parallel to the detection plane and, when the object is located in the one or more spatial planes, redirecting light reflected by the object into the detection plane, and a processor controlling light emitted by the sensor and receiving outputs from the sensor, and configured such that when an object passes through one or more of the spatial planes, the processor identifies both the spatial planes through which the object passes, and the location of the object within the spatial planes through which it passes, based on the received outputs and the position of the light redirector relative to the sensor.
    Type: Application
    Filed: March 11, 2021
    Publication date: July 22, 2021
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Publication number: 20210181891
    Abstract: A method for interacting with controls in a graphical user interface (GUI), including recording user interface gestures performed by a user, for each recorded gesture: when the gesture includes the user virtually touching a specific GUI control, applying the gesture to the specific GUI control; and when the gesture is performed without the user virtually touching a specific GUI control, identifying a particular GUI control that the user is gazing at and applying the gesture to that particular GUI control.
    Type: Application
    Filed: February 15, 2021
    Publication date: June 17, 2021
    Inventors: Björn Thomas Eriksson, Sven Robert Pettersson, Stefan Johannes Holmgren, Xiatao Wang, Rozita Teymourzadeh, Per Erik Lindström, Emil Anders Braide, Jonas Daniel Justus Hjelm, Erik Anders Claes Rosengren
  • Publication number: 20210129238
    Abstract: A cutting insert and a shoulder milling tool are disclosed. The cutting insert includes a surface-wiping secondary cutting edge inclined in relation to a median plane of the cutting insert, such that a distance to the median plane decreases in a direction toward a corner cutting edge. A circumferential surface includes a clearance surface extending along a main cutting edge. The clearance surface along the main cutting edge extends at an acute angle to the median plane, such that the clearance surface forms a negative nominal clearance angle, and wherein the circumferential surface includes first and second abutment surfaces configured for abutment against axial and/or radial support surfaces of the milling tool, the abutment surfaces extending along at least part of the main cutting edge and the surface-wiping secondary cutting edge.
    Type: Application
    Filed: November 10, 2017
    Publication date: May 6, 2021
    Inventors: Thomas ERIKSSON, Jorgen JANSSON UDD
  • Publication number: 20210081053
    Abstract: A contactless input method for an electronic device or other equipment, including projecting focused light beams from a series of locations along an edge of a control panel including a matrix of controls for an electronic device or other equipment, across a plane in an airspace in front of the controls, whereby the projected light beams traverse an area equal in size to the area of the matrix, detecting reflections of the projected light beams reflected by an object inserted into the plane, identifying which light beams are reflected, further identifying an angle at which the detected light beams are reflected, calculating a location in the plane at which the object is inserted based on the detecting, identifying and further identifying, and outputting the calculated location from the sensor to the electronic device or other equipment as an actuated corresponding location on the control panel.
    Type: Application
    Filed: October 6, 2020
    Publication date: March 18, 2021
    Inventors: Björn Thomas Eriksson, Björn Alexander Jubner, Rozita Teymourzadeh, Håkan Sven Erik Andersson, Per Carl Sture Rosengren, Xiatao Wang, Stefan Johannes Holmgren, Gunnar Martin Fröjdh, Jan Tomas Hartman, Per Oscar Sverud, Sangtaek Kim, Rasmus Dahl-Örn, Tom Richard Berglind, Karl Erik Patrik Nordström, Lars Bertil Sparf, Erik Anders Claes Rosengren, John Elis Gösta Karlsson, Remo Behdasht, Robin Kjell Åman, Joseph Shain
  • Publication number: 20210083629
    Abstract: A linearization device (380) is disclosed, which is configured to determine pre-distortion parameters associated with a plurality of non-linear amplifiers (331, 332, 333, 334), each associated with a non-linear amplifier characteristic. The linearization device comprises determination circuitry (383), a first port (381) and a second port (382). The first port is configured to receive a plurality of channel coefficients indicative of channel characteristics of a plurality of communication paths (391, 392, 393, 394) between the plurality of non-linear amplifiers and a transmit observation receiver (370). The second port is configured to receive, from the transmit observation receiver, a sum of transmission signals generated by the plurality of non-linear amplifiers and transferred over the plurality of communication paths.
    Type: Application
    Filed: December 14, 2017
    Publication date: March 18, 2021
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Ulf GUSTAVSSON, Thomas ERIKSSON, Christian FAGER
  • Patent number: 10949027
    Abstract: An interactive mid-air display including a display that presents a graphical user interface (GUI), optics projecting and rotating the GUI above the display such that the GUI is visible in-air in a plane rotated away from the display, a sensor including light emitters projecting beams towards the projected GUI, light detectors detecting reflections of the beams by objects interacting with the projected GUI, and a lens structure maximizing detection at each detector for light entering the lens structure at a respective location at a specific angle ?, whereby for each emitter-detector pair, maximum detection of light corresponds to the object being at a specific location in the projected GUI, in accordance with the locations of the emitter and detector and the angle ?, and a processor mapping detections of light for emitter-detector pairs to corresponding locations in the projected GUI, and translating the mapped locations to coordinates on the display.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 16, 2021
    Assignee: NEONODE INC.
    Inventors: Thomas Eriksson, Alexander Jubner, Rozita Teymourzadeh, Stefan Holmgren, Lars Sparf, Bengt Henry Hjalmar Edlund, Richard Berglind
  • Patent number: 10928957
    Abstract: A sensor including lenses, light emitters, each emitter projecting light out of a lens in a particular emission direction along a detection plane, light detectors, each detector detecting maximum light intensity when light enters a lens at a particular detection angle, a table of hotspots, each hotspot corresponding to an emitter-detector pair, the hotspot being a two-dimensional location in the detection plane along the emission direction of the emitter of the pair where projected light reflected by an object placed at that location, enters the lens for the detector of the pair at the detection angle of the detector, and a processor receiving outputs from the detectors corresponding to detected amounts of projected light reflected by an object in the detection plane, and calculating a two-dimensional location of the object in the detection plane based on the received outputs and based on hotspots for synchronously activated emitter-detector pairs.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: February 23, 2021
    Assignee: NEONODE INC.
    Inventors: Björn Thomas Eriksson, Sven Robert Pettersson, Stefan Johannes Holmgren, Xiatao Wang, Rozita Teymourzadeh, Per Erik Lindström, Emil Anders Braide, Jonas Daniel Justus Hjelm, Erik Anders Claes Rosengren
  • Publication number: 20210023634
    Abstract: A trigonal cutting insert for a shoulder milling tool includes an upper side, an opposite lower side and a peripheral side surface. A plurality of indexable cutting edges extend along corners of the cutting insert, each cutting edge having a main cutting edge, a corner cutting edge, and a surface-wiping secondary cutting edge. The upper side includes a recessed central surface, and a plurality of positively inclined rake surfaces having a main rake surface portion, a corner rake surface portion, and a secondary rake surface portion. A concave indentation is formed in the corner rake surface portion and in at least an initial part of the main rake surface portion adjacent to the corner rake surface portion, wherein the concave indentation has an elongated shape.
    Type: Application
    Filed: December 10, 2018
    Publication date: January 28, 2021
    Inventors: Thomas ERIKSSON, Jorgen JANSSON UDD, Stefan ROMAN
  • Publication number: 20200352019
    Abstract: Method includes providing a substrate layer, depositing a first layer along an exposed side of the substrate layer, and depositing a second layer along an exposed side of the first layer such that the first layer is disposed between the substrate layer and the second layer. One of the first or second layers is a backing layer and the other is a conductive layer. The first and second layers form a stripping sheet that is configured to strip electrons from charged particles passing through the stripping sheet. The method also includes removing at least a portion of the substrate layer.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Yong Liang, Thomas Eriksson, Vasile Neculaes, George Theodore Dalakos
  • Patent number: D902415
    Type: Grant
    Filed: April 18, 2019
    Date of Patent: November 17, 2020
    Assignee: MediRoyal Nordic AB
    Inventor: Thomas Eriksson
  • Can
    Patent number: D933481
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: October 19, 2021
    Assignee: Modoral Brands Inc.
    Inventors: Thomas Eriksson, Jason Carignan
  • Patent number: D938598
    Type: Grant
    Filed: August 13, 2020
    Date of Patent: December 14, 2021
    Assignee: MediRoyal Nordic AB
    Inventor: Thomas Eriksson