Patents by Inventor Thomas F. Janecek

Thomas F. Janecek has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9360020
    Abstract: A self-cooling fan in configured with a vent feature that draws air into a fan housing and over a heat sink to dissipate heat generated by the motor and/or control unit. The self-cooling fan has a conduit with an attached end opening that couples with a cooling zone within the fan housing and extends along a portion of the fan blade(s). A vent feature is an opening in a conduit, at or near the extended end of the conduit, that allows air to exit the conduit. A vent feature may be a venturi feature. A venturi feature creates a vacuum within a conduit via outer diameter blade velocities interacting with venturi geometries when the blades are rotating, further promoting the drawing of air into the fan housing. A cooling channel allows air from outside of the fan assembly to enter into a cooling zone where a heat sink is configured.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: June 7, 2016
    Assignee: Electric Torque Machines Inc
    Inventor: Thomas F. Janecek
  • Publication number: 20150369252
    Abstract: A high efficiency transverse flux motor fan utilizes a transverse flux motor that can provide torque to drive fan blades at a reduced weight over conventional induction and brushless DC motors. A fan incorporating a transverse flux motor may be a residential ceiling fan or high volume low speed fan. Transverse flux motors are ideal for these applications as they have a higher efficiency at low revolutions per minute. A transverse flux motor may have a stator utilizing a ring shaped lamina that has extending members that form a coil channel. A lamina may be a unitary piece of material that is formed from a sheet of metal, thereby providing a very lightweight stator assembly. An exemplary fan may provide an airflow efficiency of more than about 236 L/s*W, (500 CFM/watt), an essential airflow density of more than about 2.36 L/s*g, (5 CFM/gram) and a power density of about 150 W/kg or more.
    Type: Application
    Filed: January 27, 2015
    Publication date: December 24, 2015
    Inventors: Thomas F Janecek, Tyler Williams, Morgan Conklin, John Dyer
  • Publication number: 20150308438
    Abstract: A self-cooling fan in configured with a vent feature that draws air into a fan housing and over a heat sink to dissipate heat generated by the motor and/or control unit. The self-cooling fan has a conduit with an attached end opening that couples with a cooling zone within the fan housing and extends along a portion of the fan blade(s). A vent feature is an opening in a conduit, at or near the extended end of the conduit, that allows air to exit the conduit. A vent feature may be a venturi feature. A venturi feature creates a vacuum within a conduit via outer diameter blade velocities interacting with venturi geometries when the blades are rotating, further promoting the drawing of air into the fan housing. A cooling channel allows air from outside of the fan assembly to enter into a cooling zone where a heat sink is configured.
    Type: Application
    Filed: April 23, 2014
    Publication date: October 29, 2015
    Applicant: ELECTRIC TORQUE MACHINES, INC.
    Inventor: Thomas F. Janecek
  • Publication number: 20150162786
    Abstract: An electrical machine includes a rotor for rotation about a rotational axis, a coil arranged circumferentially with respect to and encircling the rotational axis, and a stator assembly. The stator assembly includes a unitary lamina comprising a plurality of extending members integral therewith, the extending members being bent to form a plurality of opposing extending members about the coil. The electrical machine is at least one of a transverse flux machine or a commutated flux machine. Methods of manufacturing stators for assembly with rotors to form electrical machines are also disclosed.
    Type: Application
    Filed: December 10, 2013
    Publication date: June 11, 2015
    Applicant: Electric Torque Machines, Inc.
    Inventors: Thomas F. Janecek, John M. Dyer, Scott Reynolds, Tyler K. Williams
  • Patent number: 9006951
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be “balanced” to achieve reduced overall cogging torque via utilization of one or more cogging torque reduction devices. Cogging torque reduction devices may be configured and/or otherwise customized in order to reduce and/or minimize cogging torque in an electrical machine, by generating a counteracting cogging torque waveform that at least partially counteracts and/or cancels the initial cogging torque waveform of the electrical machine.
    Type: Grant
    Filed: June 28, 2012
    Date of Patent: April 14, 2015
    Assignee: Electric Torque Machines Inc
    Inventors: Thomas F. Janecek, John M Dyer, Tyler K. Williams
  • Patent number: 8994243
    Abstract: An electrical machine stator assembly comprises: an electroconductive coil arranged circumferentially with respect to the rotational axis; a plurality of pairs of side lamination assemblies arranged circumferentially with respect to the rotational axis; a plurality of pairs of switch lamination assemblies arranged circumferentially with respect to the rotational axis and positioned adjacent ends of side lamination assemblies proximal the rotor; and at least one tooth associated with each switch lamination assembly and proximal the rotor. Each switch lamination assembly comprises a first group of laminated materials aligned generally circumferentially and generally in a first direction with respect to the rotational axis, the first direction being one selected from the group consisting of the axial and radial directions with respect to the rotational axis.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: March 31, 2015
    Assignee: Electric Torque Machines Inc
    Inventors: David G. Calley, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Patent number: 8970205
    Abstract: A adjustable Hall effect sensor system having a sensor positioning component is described. In one embodiment, the Hall effect sensor system is an independently adjustable sensor system, having a plurality of Hall effect sensor, wherein one Hall effect sensor may be displaced and adjusted without effecting the location of another Hall effect sensor. A sensor positioning component comprising a paddle coupled to a main body portion by a more narrow neck is described. A cam may be configured on a paddle and provide for fine tuning the position of a Hall effect sensor. In one embodiment the main body and extensions are comprised essentially of a circuit board.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 3, 2015
    Assignee: Electric Torque Machines Inc
    Inventors: Thomas F Janecek, Daniel S Cole
  • Patent number: 8952590
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials in connection with powdered metal materials. For example, stacks of laminated materials may be coupled to powdered metal teeth to form portions of a stator in an electrical machine.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: February 10, 2015
    Assignee: Electric Torque Machines Inc
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Patent number: 8854171
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of a dual wound coil. The coil ends of a dual wound coil can be on a common side, simplifying wiring. The dual wound coil may be configured with a low resistance, reducing resistive losses.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 7, 2014
    Assignee: Electric Torque Machines Inc.
    Inventor: Thomas F. Janecek
  • Patent number: 8836196
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: September 16, 2014
    Assignee: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Patent number: 8760023
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve reduced overall cogging torque via implementation of a sixth-phase offset. Individual cogging torque waveforms in the electrical machine may be evenly distributed across one-sixth of a voltage phase or other suitable spacing, resulting in a reduced magnitude and/or increased sinusoidality of the overall cogging torque waveform for the electrical machine.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: June 24, 2014
    Assignee: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek
  • Patent number: 8749108
    Abstract: An electrical machine comprising a rotor, a coil and a stator comprising a lamination stack coupled to a tooth, wherein the electrical machine is at least one of a transversal flux machine is described. The electrical machine may be a transversal flux machine such as a transverse or commutated flux machine. A lamination ring is described comprising a plurality of lamination stacks. A lamination stack may comprise a plurality of trenches configured to retain a plurality of teeth. The tooth may comprise a portion of the switching surface, and a portion of a lamination stack may extend to the surface of the tooth to make up a portion of the switching surface. The electrical machine may be configured with a constant air gap, wherein no more than 15% variability in the distance between the stator switching surface and the rotor switching surface.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: June 10, 2014
    Assignee: Electric Torque Machines, Inc.
    Inventors: John M. Dyer, Thomas F. Janecek, David G. Calley, Daniel S. Cole, Tyler K. Williams
  • Publication number: 20140135813
    Abstract: An evacuation sheath assembly and method of reducing or removing a blockage within a vessel without permitting embolization of particulate matter is provided. The evacuation sheath assembly includes a first elongate tubular member, having proximal and distal ends and a main lumen configured to be placed in fluid communication with a blood vessel. An expandable member is provided on a distal portion of the tubular member. The evacuation assembly further includes a second elongate tubular member having an inflation lumen configured to be placed in fluid communication with the expandable member and a fluid inflator. The fluid inflator is configured to be placed in fluid communication with the inflation lumen in order to provide a regulated pressure fluid source for inflating the expandable member.
    Type: Application
    Filed: January 16, 2014
    Publication date: May 15, 2014
    Applicant: St. Jude Medical, Cardiology Division, Inc.
    Inventors: Steven S. Hackett, Eric S. Whitbrook, Thomas F. Janecek, Chad W. Trembath, Andrew J. Dusbabek, John R. Drontle, Joel D. Phillips, Thomas V. Ressemann, Kyle L. Thunstrom, Peter T. Keith
  • Patent number: 8628555
    Abstract: An apparatus and method for ejecting fluid from a fluid delivery system. The fluid delivery system has a pneumatic assembly that when triggered injects gas into a hydraulic assembly, which in turn ejects fluid through an external interface. An electronic interface displays various measurements, for example, how much fluid has been ejected and if the hydraulic system is closed the pressure of the system. The pneumatic assembly can also be depressurized such that fluid can reenter the hydraulic assembly through the external interface.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: January 14, 2014
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Stephen J. Perry, Michele B. Carter, David R. Conti, Thomas F. Janecek, Bryan D. Knodel, Anthony Scott Hollars, Peter Crowley, Donald C. Hovey, William Lucas Churchill, John B. Golden, Yam Chin, Mark L. Adams, Carleton E. Yee, Otto E. Anderhub
  • Publication number: 20130264905
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
    Type: Application
    Filed: March 12, 2013
    Publication date: October 10, 2013
    Applicant: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Publication number: 20130169096
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve reduced overall cogging torque via implementation of a sixth-phase offset. Individual cogging torque waveforms in the electrical machine may be evenly distributed across one-sixth of a voltage phase or other suitable spacing, resulting in a reduced magnitude and/or increased sinusoidality of the overall cogging torque waveform for the electrical machine.
    Type: Application
    Filed: July 17, 2012
    Publication date: July 4, 2013
    Applicant: ELECTRIC TORQUE MACHINES INC.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek
  • Patent number: 8415848
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of extended magnets, overhung rotors, and/or stator tooth overlap. Extended magnets may reduce flux leakage between adjacent flux concentrators. Overhung rotors may reduce flux leakage, and may also facilitate voltage balancing in polyphase devices. Stator tooth overlap may reduce hysteresis losses, for example losses in flux concentrating portions of an electrical machine.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: April 9, 2013
    Assignee: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S Cole, John M. Dyer, Thomas F. Janecek
  • Patent number: 8405275
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to achieve increased efficiency, increased output torque, and/or reduced operating losses via use of laminated materials, for example laminated materials configured with cuts and/or segmentations. Segmentations may also assist with manufacturability, mechanical retention of components, and the like.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: March 26, 2013
    Assignee: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, Tyler K. Williams
  • Patent number: 8395291
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be configured to be coupled to an electric bicycle or other light electric vehicle. Certain exemplary electrical machines may be configured with a high torque density and/or lower operating losses, providing improved operational characteristics to an e-bike. Moreover, certain exemplary electrical machines may replace a gear cassette on a bicycle, allowing conversion of the bicycle from manual to electric operation.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: March 12, 2013
    Assignee: Electric Torque Machines, Inc.
    Inventors: David G. Calley, Daniel S. Cole, John M. Dyer, Thomas F. Janecek, J. Scott Reynolds
  • Publication number: 20130002061
    Abstract: Electrical machines, for example transverse flux machines and/or commutated flux machines, may be “balanced” to achieve reduced overall cogging torque via utilization of one or more cogging torque reduction devices. Cogging torque reduction devices may be configured and/or otherwise customized in order to reduce and/or minimize cogging torque in an electrical machine, by generating a counteracting cogging torque waveform that at least partially counteracts and/or cancels the initial cogging torque waveform of the electrical machine.
    Type: Application
    Filed: June 28, 2012
    Publication date: January 3, 2013
    Applicant: MOTOR EXCELLENCE LLC
    Inventors: Thomas F. Janecek, John M Dyer, Tyler K. Williams