Patents by Inventor Thomas G. Folland

Thomas G. Folland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230221242
    Abstract: Devices and methods for non-dispersive infrared (NDIR) sensing are disclosed. In one aspect, a non-dispersive infrared sensor is disclosed which, in one embodiment includes a nanophotonic infrared emitting metamaterial (NIREM) emitter configured to selectively emit radiation corresponding to a respective vibrational resonance frequency for each of a plurality of different analytes of interest. The broadband detector can be configured to detect photons associated with vibrational resonance of each of the plurality of analytes of interest in response to the emitted radiation from the NIREM emitter, in order to determine properties of one or more of the analytes of interest.
    Type: Application
    Filed: January 12, 2023
    Publication date: July 13, 2023
    Inventors: Joshua D. Caldwell, Edward Sachet, Christopher Shelton, Thomas G. Folland
  • Patent number: 11409142
    Abstract: Metallic and dielectric domains in phase change materials (PCM) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic polaritons (HPs) at the PCM domain boundaries, and tuning the wavelength of HPs propagating in hyperbolic materials over these domains, providing a methodology for realizing planar, sub-diffractive refractive optics. This approach offers reconfigurable control of in-plane HP propagation to provide design optical functionality because the phase change material can be manipulated by changing the local structure, for example, to manipulate polaritons in the adjacent hyperbolic material, thus tuning the wave propagation properties of the polaritons in the hyperbolic material.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: August 9, 2022
    Assignees: Vanderbilt University, University of Georgia Research Foundation, Inc.
    Inventors: Joshua D. Caldwell, Thomas G. Folland, Richard F. Haglund, Yohannes Abate
  • Publication number: 20190278112
    Abstract: Metallic and dielectric domains in phase change materials (PCM) provide spatially localized changes in the local dielectric environment, enabling launching, reflection, and transmission of hyperbolic polaritons (HPs) at the PCM domain boundaries, and tuning the wavelength of HPs propagating in hyperbolic materials over these domains, providing a methodology for realizing planar, sub-diffractive refractive optics. This approach offers reconfigurable control of in-plane HP propagation to provide design optical functionality because the phase change material can be manipulated by changing the local structure, for example, to manipulate polaritons in the adjacent hyperbolic material, thus tuning the wave propagation properties of the polaritons in the hyperbolic material.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 12, 2019
    Inventors: Joshua D. Caldwell, Thomas G. Folland, Richard F. Haglund, Yohannes Abate