Patents by Inventor Thomas G. Leblanc

Thomas G. Leblanc has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11169344
    Abstract: A fiber distribution hub includes a module mounting location disposed within the cabinet separate from a termination field. The module mounting location includes a plurality of spaces at which various types of modules can be mounted. For example, splitter modules, connector storage modules, and/or fiber storage modules can be installed at the module mounting location. The modules can be mounted in any order or configuration. Some of the modules may be tethered together before installation at the hub.
    Type: Grant
    Filed: February 27, 2019
    Date of Patent: November 9, 2021
    Assignee: CommScope Technologies LLC
    Inventors: Thomas G. LeBlanc, Erik J. Gronvall, Kimberly Ann Haller
  • Patent number: 11159265
    Abstract: Systems and methods for delivering multiple passive optical network services are disclosed. One system includes a first optical transmission service comprising a common wavelength pair routed from a source to each of a plurality of subscribers and a second optical transmission service comprising a plurality of unique wavelength pairs, each of the unique wavelength pairs assigned to a subscriber among the plurality of subscribers. The system includes a splitter optically connected to first fiber carrying the first optical transmission service, the splitter including a plurality of outputs each delivering the first optical transmission service, and a wavelength division multiplexer connected to a second fiber, the wavelength division multiplexer separating each of the unique wavelength pairs of the second optical transmission service onto separate optical fibers.
    Type: Grant
    Filed: July 27, 2020
    Date of Patent: October 26, 2021
    Assignee: CommScope Technologies LLC
    Inventors: Timothy G. Badar, Erik Gronvall, Kristofer Bolster, Thomas G. LeBlanc
  • Publication number: 20210302682
    Abstract: A fiber optic telecommunications device includes an enclosure defining an interior. A first fiber optic adapter is provided at the enclosure. A spool is provided at an exterior of the enclosure. A fiber optic cable, which includes a first optical fiber, is wrapped around the spool. A first fiber optic connector is mounted at a first end of the first optical fiber. The first end of the first optical fiber is positioned within the interior of the enclosure. The first fiber optic connector is inserted within the first fiber optic adapter. The enclosure and the spool are configured to rotate in unison about a common axis when the fiber optic cable is unwound from the spool.
    Type: Application
    Filed: April 23, 2021
    Publication date: September 30, 2021
    Inventors: Scott C. Kowalczyk, Trevor D. Smith, Jonathan R. Kaml, Thomas G. LeBlanc, Ronald A. Beck
  • Patent number: 11009671
    Abstract: A fiber optic telecommunications device includes an enclosure defining an interior. A first fiber optic adapter is provided at the enclosure. A spool is provided at an exterior of the enclosure. A fiber optic cable, which includes a first optical fiber, is wrapped around the spool. A first fiber optic connector is mounted at a first end of the first optical fiber. The first end of the first optical fiber is positioned within the interior of the enclosure. The first fiber optic connector is inserted within the first fiber optic adapter. The enclosure and the spool are configured to rotate in unison about a common axis when the fiber optic cable is unwound from the spool.
    Type: Grant
    Filed: December 22, 2016
    Date of Patent: May 18, 2021
    Assignee: CommScope Technologies LLC
    Inventors: Scott C. Kowalczyk, Trevor D. Smith, Jonathan R. Kaml, Thomas G. LeBlanc, Ronald A. Beck
  • Publication number: 20210141166
    Abstract: A fiber optic drop terminal assembly includes a housing, a spool and a fiber optic distribution cable. The housing has a first exterior surface and an oppositely disposed second exterior surface. A plurality of ruggedized adapters is mounted on the first exterior surface of the housing. The ruggedized adapters include a first port accessible from outside the housing and a second port accessible from inside the housing. The spool is engaged with the second exterior surface and includes a drum portion. The fiber distribution cable is coiled around the drum portion. The distribution cable includes a first end and an oppositely disposed second end. The second end is disposed inside the housing.
    Type: Application
    Filed: November 20, 2020
    Publication date: May 13, 2021
    Inventors: Trevor D. Smith, Raymond Hagen, Thomas G. LeBlanc, Thomas Marcouiller
  • Publication number: 20210141183
    Abstract: A telecommunications chassis comprises a cable sealing portion defining at least one cable opening configured to sealably receive a cable and a module mounting portion extending from the cable sealing portion, which further comprises a housing defining an open front closable by a door to define an interior, a rear wall, a right wall, and a left wall. A plurality of module mounting locations is provided in a vertically stacked arrangement, each configured to receive a telecommunications module through the open front. An exterior of the housing includes a first column of radius limiters defining curved profiles for guiding cables from the front toward the rear with bend control. A second column of radius limiters in the form of spools is spaced apart and generally parallel to the first column of radius limiters and a third column of radius limiters, at least some of which are in the form of spools, is also spaced apart and generally parallel to the first and second columns of radius limiters.
    Type: Application
    Filed: October 8, 2020
    Publication date: May 13, 2021
    Inventors: James J. Solheid, Kristofer Bolster, Soutsada Vongseng, Thomas G. LeBlanc
  • Publication number: 20210044373
    Abstract: Systems and methods for delivering multiple passive optical network services are disclosed. One system includes a first optical transmission service comprising a common wavelength pair routed from a source to each of a plurality of subscribers and a second optical transmission service comprising a plurality of unique wavelength pairs, each of the unique wavelength pairs assigned to a subscriber among the plurality of subscribers. The system includes a splitter optically connected to first fiber carrying the first optical transmission service, the splitter including a plurality of outputs each delivering the first optical transmission service, and a wavelength division multiplexer connected to a second fiber, the wavelength division multiplexer separating each of the unique wavelength pairs of the second optical transmission service onto separate optical fibers.
    Type: Application
    Filed: July 27, 2020
    Publication date: February 11, 2021
    Inventors: Timothy G. Badar, Erik Gronvall, Kristofer Bolster, Thomas G. LeBlanc
  • Publication number: 20210041642
    Abstract: The present disclosure relates to systems and method for deploying a fiber optic network. Distribution devices are used to index fibers within the system to ensure that live fibers are provided at output locations throughout the system. In an example, fibers can be indexed in multiple directions within the system. In an example, fibers can be stored and deployed form storage spools.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 11, 2021
    Inventors: Paul Kmit, Thomas Parsons, Erik J. Gronvall, Douglas C. Ellens, Panayiotis Toundas, Timothy G. Badar, Trevor D. Smith, Thomas G. LeBlanc, Todd Loeffelholz
  • Publication number: 20200409007
    Abstract: A telecommunications wall fixture includes a body configured for mounting to a wall, the body defining a mounting surface generally parallel to the wall when mounted. A cable storage spool is rotatably mounted to the body for storage and deployment of cable. A device is used for re-orienting the rotation axis of the spool from being generally perpendicular to the mounting surface to being generally non-perpendicular to the mounting surface, wherein the spool is configured such that the spool can be stored within the body when the spool is oriented to have the rotation axis generally perpendicular to the mounting surface.
    Type: Application
    Filed: July 10, 2020
    Publication date: December 31, 2020
    Applicant: CommScope Technologies LLC
    Inventors: Thomas PARSONS, Matthew J. HOLMBERG, James J. SOLHEID, Douglas C. ELLENS, Thomas G. LEBLANC
  • Patent number: 10852488
    Abstract: A fiber optic drop terminal assembly includes a housing, a spool and a fiber optic distribution cable. The housing has a first exterior surface and an oppositely disposed second exterior surface. A plurality of ruggedized adapters is mounted on the first exterior surface of the housing. The ruggedized adapters include a first port accessible from outside the housing and a second port accessible from inside the housing. The spool is engaged with the second exterior surface and includes a drum portion. The fiber distribution cable is coiled around the drum portion. The distribution cable includes a first end and an oppositely disposed second end. The second end is disposed inside the housing.
    Type: Grant
    Filed: September 25, 2019
    Date of Patent: December 1, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Trevor D. Smith, Raymond Hagen, Thomas G. LeBlanc, Thomas Marcouiller
  • Patent number: 10830965
    Abstract: The present disclosure relates to a fiber optic network architecture that uses outside plant fan-out devices to distribute optical signals between fiber distribution hubs and multi-service terminals. The network architecture can also include collector boxes positioned at selected locations of the network architecture. Additionally, patching systems can be used in facilitating upgrading the capacity of the fiber optic network.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: November 10, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Thomas G. LeBlanc, Bryan Kennedy, Erik J. Gronvall, Douglas C. Ellens
  • Patent number: 10802238
    Abstract: A telecommunications chassis comprises a cable sealing portion defining at least one cable opening configured to sealably receive a cable and a module mounting portion extending from the cable sealing portion, which further comprises a housing defining an open front closable by a door to define an interior, a rear wall, a right wall, and a left wall. A plurality of module mounting locations is provided in a vertically stacked arrangement, each configured to receive a telecommunications module through the open front. An exterior of the housing includes a first column of radius limiters defining curved profiles for guiding cables from the front toward the rear with bend control. A second column of radius limiters in the form of spools is spaced apart and generally parallel to the first column of radius limiters and a third column of radius limiters, at least some of which are in the form of spools, is also spaced apart and generally parallel to the first and second columns of radius limiters.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: October 13, 2020
    Assignee: CommScope Technologies LLC
    Inventors: James J. Solheid, Kristofer Bolster, Soutsada Vongseng, Thomas G. LeBlanc
  • Patent number: 10788642
    Abstract: A fiber optic telecommunications device includes an enclosure defining an interior. A first fiber optic adapter is provided at the enclosure. A spool is provided at an exterior of the enclosure. A fiber optic cable, which includes a first optical fiber, is wrapped around the spool. A first fiber optic connector is mounted at a first end of the first optical fiber. The first end of the first optical fiber is positioned within the interior of the enclosure. The first fiber optic connector is inserted within the first fiber optic adapter. The enclosure and the spool are configured to rotate in unison about a common axis when the fiber optic cable is unwound from the spool.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: September 29, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Scott C. Kowalczyk, Trevor D. Smith, Jonathan R. Kaml, Thomas G. LeBlanc, Ronald A. Beck
  • Patent number: 10788629
    Abstract: The present disclosure relates to systems and method for deploying a fiber optic network. Distribution devices are used to index fibers within the system to ensure that live fibers are provided at output locations throughout the system. In an example, fibers can be indexed in multiple directions within the system. In an example, fibers can be stored and deployed form storage spools.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: September 29, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Paul Kmit, Thomas Parsons, Erik J. Gronvall, Douglas C. Ellens, Panayiotis Toundas, Timothy G. Badar, Trevor D. Smith, Thomas G. LeBlanc, Todd Loeffelholz
  • Patent number: 10727972
    Abstract: Systems and methods for delivering multiple passive optical network services are disclosed. One system includes a first optical transmission service comprising a common wavelength pair routed from a source to each of a plurality of subscribers and a second optical transmission service comprising a plurality of unique wavelength pairs, each of the unique wavelength pairs assigned to a subscriber among the plurality of subscribers. The system includes a splitter optically connected to first fiber carrying the first optical transmission service, the splitter including a plurality of outputs each delivering the first optical transmission service, and a wavelength division multiplexer connected to a second fiber, the wavelength division multiplexer separating each of the unique wavelength pairs of the second optical transmission service onto separate optical fibers.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: July 28, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Timothy G. Badar, Erik Gronvall, Kristofer Bolster, Thomas G. LeBlanc
  • Patent number: 10712517
    Abstract: A telecommunications wall fixture includes a body configured for mounting to a wall, the body defining a mounting surface generally parallel to the wall when mounted. A cable storage spool is rotatably mounted to the body for storage and deployment of cable. A device is used for re-orienting the rotation axis of the spool from being generally perpendicular to the mounting surface to being generally non-perpendicular to the mounting surface, wherein the spool is configured such that the spool can be stored within the body when the spool is oriented to have the rotation axis generally perpendicular to the mounting surface.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: July 14, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Thomas Parsons, Matthew J. Holmberg, James J. Solheid, Douglas C. Ellens, Thomas G. Leblanc
  • Publication number: 20200166717
    Abstract: The present disclosure relates to a fiber optic network architecture that uses outside plant fan-out devices to distribute optical signals between fiber distribution hubs and multi-service terminals. The network architecture can also include collector boxes positioned at selected locations of the network architecture. Additionally, patching systems can be used in facilitating upgrading the capacity of the fiber optic network.
    Type: Application
    Filed: November 25, 2019
    Publication date: May 28, 2020
    Inventors: Thomas G. LeBlanc, Bryan Kennedy, Erik J. Gronvall, Douglas C. Ellens
  • Patent number: 10627592
    Abstract: A fiber optic telecommunications device includes an enclosure defining an interior. A first fiber optic adapter is provided at the enclosure. A spool is provided at an exterior of the enclosure. A fiber optic cable, which includes a first optical fiber, is wrapped around the spool. A first fiber optic connector is mounted at a first end of the first optical fiber. The first end of the first optical fiber is positioned within the interior of the enclosure. The first fiber optic connector is inserted within the first fiber optic adapter. The enclosure and the spool are configured to rotate in unison about a common axis when the fiber optic cable is unwound from the spool.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: April 21, 2020
    Assignee: CommScope Technologies LLC
    Inventors: Scott C. Kowalczyk, Trevor D. Smith, Jonathan R. Kaml, Thomas G. LeBlanc, Ronald A. Beck
  • Publication number: 20200116956
    Abstract: A fiber optic drop terminal assembly includes a housing, a spool and a fiber optic distribution cable. The housing has a first exterior surface and an oppositely disposed second exterior surface. A plurality of ruggedized adapters is mounted on the first exterior surface of the housing. The ruggedized adapters include a first port accessible from outside the housing and a second port accessible from inside the housing. The spool is engaged with the second exterior surface and includes a drum portion. The fiber distribution cable is coiled around the drum portion. The distribution cable includes a first end and an oppositely disposed second end. The second end is disposed inside the housing.
    Type: Application
    Filed: September 25, 2019
    Publication date: April 16, 2020
    Inventors: Trevor D. Smith, Raymond Hagen, Thomas G. LeBlanc, Thomas Marcouiller
  • Publication number: 20200064577
    Abstract: A telecommunications chassis comprises a cable sealing portion defining at least one cable opening configured to sealably receive a cable and a module mounting portion extending from the cable sealing portion, which further comprises a housing defining an open front closable by a door to define an interior, a rear wall, a right wall, and a left wall. A plurality of module mounting locations is provided in a vertically stacked arrangement, each configured to receive a telecommunications module through the open front. An exterior of the housing includes a first column of radius limiters defining curved profiles for guiding cables from the front toward the rear with bend control. A second column of radius limiters in the form of spools is spaced apart and generally parallel to the first column of radius limiters and a third column of radius limiters, at least some of which are in the form of spools, is also spaced apart and generally parallel to the first and second columns of radius limiters.
    Type: Application
    Filed: March 1, 2019
    Publication date: February 27, 2020
    Inventors: James J. Solheid, Kristofer Bolster, Soutsada Vongseng, Thomas G. LeBlanc