Patents by Inventor Thomas H. Kinsley

Thomas H. Kinsley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210091039
    Abstract: Semiconductor assemblies and packages using edge stacking and associated systems and methods are disclosed herein. A semiconductor package may include (1) a base substrate having a base surface, (2) one or more dies attached over the base surface, and (3) a mold material encapsulating the base substrate and the one or more dies. The package may further include connectors on a side surface thereof, wherein the connectors are electrically coupled to the base substrate and/or the one or more dies. The connectors may be further configured to electrically couple the package to one or more neighboring semiconductor packages and/or electrical circuits.
    Type: Application
    Filed: December 8, 2020
    Publication date: March 25, 2021
    Inventor: Thomas H. Kinsley
  • Patent number: 10957417
    Abstract: Systems, apparatuses, and methods for on-die memory power analytics and management are described. In some examples, the memory analytics and management may include a frequency-dependent analysis or simulation model of a memory die to determine an operating characteristic of the die. A set of ports of the memory die may be selected and one or more alternating current (AC) excitation signals may be applied to the ports to determine an impedance associated with the ports. The impedance may be used to determine one or more parameters (e.g., scattering, impedance) to analyze a die and for subsequently managing power distribution on the die. Analytics on a subset of ports on a die may be used to simulate the electrical response of the entire memory die and thus manage power delivery for the die.
    Type: Grant
    Filed: February 10, 2020
    Date of Patent: March 23, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Fuad Badrieh, Thomas H. Kinsley, Baekkyu Choi
  • Patent number: 10950580
    Abstract: A semiconductor device package is provided. The semiconductor device package includes a stack of semiconductor dies over a substrate, the substrate including a plurality of electrical contacts, and an annular lower lid disposed over the substrate and surrounding the stack of semiconductor dies. The annular lower lid includes a lower surface coupled to the substrate, an upper surface coupled to an upper lid, and an outer surface in which is formed an opening. The semiconductor device assembly further includes a circuit element disposed in the opening and electrically coupled to at least a first one of the plurality of electrical contacts. The semiconductor device assembly further includes the upper lid disposed over the annular lower lid and the stack of semiconductor dies.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: March 16, 2021
    Assignee: Micron Technology, Inc.
    Inventor: Thomas H. Kinsley
  • Patent number: 10950282
    Abstract: Methods, systems, and apparatuses related to memory operation with on-die termination (ODT) are provided. A memory device may be configured to provide ODT at a first portion (e.g., rank) during multiple communications at a second portion (e.g., rank). For example, a memory device may receive a first command instructing a first portion to perform a first communication and instructing a second portion to enter an ODT mode. The device may perform, with the first portion, the first communication with a host while the second portion is in the ODT mode. The device may receive a second command instructing the first portion to perform a second communication, and the device may perform, with the first portion, the second communication while the second portion remains in the ODT mode. The second portion may persist in the ODT mode for an indicated number of communications, or until instructed to exit the ODT mode.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: March 16, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Gary Howe, Eric J. Stave, Thomas H. Kinsley, Matthew A. Prather
  • Publication number: 20210074335
    Abstract: Methods and devices for dynamic allocation of a capacitive component in a memory device are described. A memory device may include one or more voltage rails for distributing supply voltages to a memory die. A memory device may include a capacitive component that may be dynamically coupled to a voltage rail based on an identification of an operating condition on the memory die, such as a voltage droop on the voltage rail. The capacitive component may be dynamically coupled with the voltage rail to maintain the supply voltage on the voltage rail during periods of high demand. The capacitive component may be dynamically switched between voltage rails during operation of the memory device based on operating conditions associated with the voltage rails.
    Type: Application
    Filed: September 18, 2020
    Publication date: March 11, 2021
    Inventors: Fuad Badrieh, Thomas H. Kinsley, Baekkyu Choi
  • Publication number: 20210074348
    Abstract: Methods, apparatuses, and systems for staggering refresh operations to memory arrays in different dies of a three-dimensional stacked (3DS) memory device are described. A 3DS memory device may include one die or layer of that controls or regulates commands, including refresh commands, to other dies or layers of the memory device. For example, one die of the 3DS memory may delay a refresh command when issuing the multiple concurrent memory refreshes would cause some problematic performance condition, such as high peak current, within the memory device.
    Type: Application
    Filed: September 6, 2019
    Publication date: March 11, 2021
    Inventors: Matthew A. Prather, Thomas H. Kinsley
  • Publication number: 20210037679
    Abstract: Systems, apparatuses, and methods for thermal dissipation on or from an electronic device are described. For example, a memory module may have a printed circuit board (PCB) having an edge connector, a plurality of memory devices disposed on a surface of the PCB, and a tubular heat spreader disposed along an edge of the PCB opposite the edge connector. The tubular heat spreader may comprise a tubular portion open at both ends thereof to permit the through flow of a cooling gas; and two planar elements extending in parallel away from the tubular portion and configured to provide a friction fit with the memory module. Each of the planar elements may be configured to convey thermal energy from the memory module to the tubular portion.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 4, 2021
    Inventors: Thomas H. Kinsley, George E. Pax, Yogesh Sharma, Gregory A. King, Chan H. Yoo, Randon K. Richards
  • Publication number: 20210036125
    Abstract: Systems, apparatuses, and methods relating to memory devices and packaging are described. A device, such as a dual inline memory module (DIMM) or other electronic device package, may include a substrate with a layer of graphene configured to conduct thermal energy (e.g., heat) away from components mounted or affixed to the substrate. In some examples, a DIMM includes an uppermost or top layer of graphene that is exposed to the air and configured to allow connection of memory devices (e.g., DRAMs) to be soldered to the conducting pads of the substrate. The graphene may be in contact with parts of the memory device other than the electrical connections with the conducting pads and may thus be configured as a heat sink for the device. Other thin, conductive layers of may be used in addition to or as an alternative to graphene. Graphene may be complementary to other heat sink mechanisms.
    Type: Application
    Filed: August 2, 2019
    Publication date: February 4, 2021
    Inventors: Chan H. Yoo, George E. Pax, Yogesh Sharma, Gregory A. King, Thomas H. Kinsley, Randon K. Richards
  • Patent number: 10867964
    Abstract: Semiconductor assemblies using edge stacking and associated systems and methods are disclosed herein. In some embodiments, the semiconductor assemblies comprise stacked semiconductor packages including a base substrate having a base surface, a side substrate having a side surface orthogonal to the base surface, and a die stack disposed over the base surface and having an outermost die with an outermost surface orthogonal to the side surface. The side substrate can be electrically coupled to the die stack via a plurality of interconnects extending from the side surface of the side substrate to the first surface of the first substrate or the third surface of the outermost die. The semiconductor packages can further comprise a conductive material at an outer surface of the side substrate, thereby allowing the semiconductor packages to be electrically coupled to neighboring semiconductor packages via the conductive material.
    Type: Grant
    Filed: July 14, 2019
    Date of Patent: December 15, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Thomas H. Kinsley
  • Patent number: 10796729
    Abstract: Methods and devices for dynamic allocation of a capacitive component in a memory device are described. A memory device may include one or more voltage rails for distributing supply voltages to a memory die. A memory device may include a capacitive component that may be dynamically coupled to a voltage rail based on an identification of an operating condition on the memory die, such as a voltage droop on the voltage rail. The capacitive component may be dynamically coupled with the voltage rail to maintain the supply voltage on the voltage rail during periods of high demand. The capacitive component may be dynamically switched between voltage rails during operation of the memory device based on operating conditions associated with the voltage rails.
    Type: Grant
    Filed: February 5, 2019
    Date of Patent: October 6, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Fuad Badrieh, Thomas H. Kinsley, Baekkyu Choi
  • Publication number: 20200310521
    Abstract: Methods, systems, and devices for predictive power management are described. Correlations may be identified between a set of commands performed at the memory device and oscillating voltage patterns, or a resonance frequency, or both. Voltages may be monitored by the memory device and be compared to the identified voltage pattern to mitigate undesirable oscillating voltages and resonance frequency.
    Type: Application
    Filed: April 30, 2020
    Publication date: October 1, 2020
    Inventors: Fuad Badrieh, Baekkyu Choi, Thomas H. Kinsley
  • Publication number: 20200310520
    Abstract: Methods, systems, and devices for predictive power management are described. Correlations may be identified between a set of commands performed at the memory device and oscillating voltage patterns, or a resonance frequency, or both. Voltages may be monitored by the memory device and be compared to the identified voltage pattern to mitigate undesirable oscillating voltages and resonance frequency.
    Type: Application
    Filed: March 29, 2019
    Publication date: October 1, 2020
    Inventors: Fuad Badrieh, Baekkyu Choi, Thomas H. Kinsley
  • Publication number: 20200303350
    Abstract: A semiconductor device package is provided. The package can include a stack of semiconductor dies over a substrate, the substrate including a plurality of electrical contacts, and an annular interposer disposed over the substrate and surrounding the stack of semiconductor dies. The annular interposer can include a plurality of circuit elements each electrically coupled to at least a corresponding one of the plurality of electrical contacts. The package can further include a lid disposed over the annular interposer and the stack of semiconductor dies.
    Type: Application
    Filed: June 8, 2020
    Publication date: September 24, 2020
    Inventor: Thomas H. Kinsley
  • Patent number: 10748872
    Abstract: Integrated semiconductor assemblies and associated methods of manufacturing are disclosed herein. In one embodiment, a semiconductor device assembly comprises a base substrate having a cavity and a perimeter region at least partially surrounding the cavity. The cavity is defined by sidewalls extending at least partially through the substrate. The assembly further comprises a first die attached to the base substrate at the cavity, and a second die over at least a portion of the first die and attached to the base substrate at the perimeter region. In some embodiments, the first and second dies can be electrically coupled to each other via circuitry of the substrate.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: August 18, 2020
    Assignee: Micron Technology, Inc.
    Inventor: Thomas H. Kinsley
  • Publication number: 20200258593
    Abstract: Systems, apparatuses, and methods for on-die memory power analytics and management are described. In some examples, the memory analytics and management may include a frequency-dependent analysis or simulation model of a memory die to determine an operating characteristic of the die. A set of ports of the memory die may be selected and one or more alternating current (AC) excitation signals may be applied to the ports to determine an impedance associated with the ports. The impedance may be used to determine one or more parameters (e.g., scattering, impedance) to analyze a die and for subsequently managing power distribution on the die. Analytics on a subset of ports on a die may be used to simulate the electrical response of the entire memory die and thus manage power delivery for the die.
    Type: Application
    Filed: February 10, 2020
    Publication date: August 13, 2020
    Inventors: Fuad Badrieh, Thomas H. Kinsley, Beakkyu Choi
  • Publication number: 20200258563
    Abstract: Techniques, apparatus, and devices for managing power in a memory die are described. A memory die may include an array of memory cells and one or more voltage sensors. Each voltage sensor may be on the same substrate as the array of memory cells and may sense a voltage at a location associated with the array. The voltage sensors may generate one or more analog voltage signals that may be converted to one or more digital signals on the memory die. In some cases, the analog voltage signals may be converted to digital signals using an oscillator and a counter on the memory die. The digital signal may be provided to a power management integrated circuit (PMIC), which may adjust a voltage supplied to the array based on the digital signal.
    Type: Application
    Filed: April 30, 2020
    Publication date: August 13, 2020
    Inventors: Fuad Badrieh, Thomas H. Kinsley, Baekkyu Choi
  • Publication number: 20200251150
    Abstract: Methods and devices for dynamic allocation of a capacitive component in a memory device are described. A memory device may include one or more voltage rails for distributing supply voltages to a memory die. A memory device may include a capacitive component that may be dynamically coupled to a voltage rail based on an identification of an operating condition on the memory die, such as a voltage droop on the voltage rail. The capacitive component may be dynamically coupled with the voltage rail to maintain the supply voltage on the voltage rail during periods of high demand. The capacitive component may be dynamically switched between voltage rails during operation of the memory device based on operating conditions associated with the voltage rails.
    Type: Application
    Filed: February 5, 2019
    Publication date: August 6, 2020
    Inventors: Fuad Badrieh, Thomas H. Kinsley, Baekkyu Choi
  • Publication number: 20200234753
    Abstract: Memory devices, systems including memory devices, and methods of operating memory devices and systems in which a memory device can include a voltage regulator for adjusting a supply voltage to an output voltage and providing the output voltage to other devices external to the memory device (e.g., other memory devices in the same memory system, processors, graphics chipsets, other logic circuits, expansion cards, etc.). A memory device may comprise one or more external inputs configured to receive a supply voltage having a first voltage level; a voltage regulator configured to receive the supply voltage from the one or more external inputs and to output an output voltage having a second voltage level different from the first voltage level; one or more memories configured to receive the output voltage from the voltage regulator; and one or more external outputs configured to supply the output voltage to one or more connected devices.
    Type: Application
    Filed: April 2, 2020
    Publication date: July 23, 2020
    Inventors: Matthew A. Prather, Thomas H. Kinsley
  • Publication number: 20200210352
    Abstract: Systems and methods are described to enable a memory device integrated in a memory module or system to disable one or more data bits, nibbles or bytes of the memory device. The memory device can be further configured to disable error or redundancy checking associated with the disabled data bits, nibbles or bytes, to mask errors associated with the disabled data bits, nibbles or bytes, and/or to suppress the refresh of portions of a memory array associated with the disabled data bits, nibbles or bytes.
    Type: Application
    Filed: December 16, 2019
    Publication date: July 2, 2020
    Inventor: Thomas H. Kinsley
  • Publication number: 20200212010
    Abstract: Semiconductor packages with pass-through clock traces and associated devices, systems, and methods are disclosed herein. In one embodiment, a semiconductor device includes a package substrate including a first surface having a plurality of substrate contacts, a first semiconductor die having a lower surface attached to the first surface of the package substrate, and a second semiconductor die stacked on top of the first semiconductor die. The first semiconductor die includes an upper surface including a first conductive contact, and the second semiconductor die includes a second conductive contact. A first electrical connector electrically couples a first one of the plurality of substrate contacts to the first and second conductive contacts, and a second electrical connector electrically couples a second one of the plurality of substrate contacts to the first and second conductive contacts.
    Type: Application
    Filed: July 16, 2019
    Publication date: July 2, 2020
    Inventors: Thomas H. Kinsley, George E. Pax