Patents by Inventor Thomas J. Brunschwiler

Thomas J. Brunschwiler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160351485
    Abstract: An electronic circuit includes a substrate device which includes a first substrate section including a first plurality of layers attached to each other having a first orientation (x2) and a second substrate section including a second plurality of layers attached to each other. The second plurality of layers have a second orientation (x3). The first orientation (x2) and the second orientation (x3) are perpendicular with respect to one another.
    Type: Application
    Filed: June 24, 2016
    Publication date: December 1, 2016
    Inventors: Thomas J. Brunschwiler, Dominic Gschwend, Keiji Matsumoto, Stefano S. Oggioni, Gerd Schlottig, Timo J. Tick, Jonas Zuercher
  • Publication number: 20160351529
    Abstract: A method for electrically coupling a pad and a front face of a pillar, including shaping the front face pillar, the front face having at least partially a convex surface, applying a suspension to the front face or to the pad, wherein the suspension includes a carrier fluid, electrically conducting microparticles and electrically conducting nanoparticles, arranging the front face of the pillar opposite to the pad at a distance such that the carrier fluid bridges at least partially a gap between the front face of the pillar and the pad, evaporating the carrier fluid thereby confining the microparticles and the nanoparticles, and thereby arranging the nanoparticles and the microparticles as percolation paths between the front face of the pillar and the pad, and sintering the arranged nanoparticles for forming metallic bonds at least between the nanoparticles and/or between the nanoparticles and the front face of the pillar or the pad.
    Type: Application
    Filed: November 5, 2015
    Publication date: December 1, 2016
    Inventors: Thomas J. Brunschwiler, Richard Dixon, Maaike M. Visser Taklo, Bernhard Wunderle, Kerry Yu, Jonas Zuercher
  • Publication number: 20160329289
    Abstract: A method of forming a stacked surface arrangement for semiconductor devices includes joining a first surface to a second surface with a solder bump, the solder bump including a substantially pure first metal; depositing nanoparticles of a second metal onto a surface of the solder bump; performing an annealing operation to form a film of the second metal on the surface of the solder bump; and performing a reflow or a second annealing operation to transform the solder bump from the substantially pure first metal to an alloy of the first metal and the second metal.
    Type: Application
    Filed: May 4, 2015
    Publication date: November 10, 2016
    Inventors: Thomas J. Brunschwiler, Eric D. Perfecto, Jonas Zuercher
  • Patent number: 9433077
    Abstract: A substrate device for electronic circuits or devices includes a first substrate section including a first plurality of layers attached to each other having a first orientation (x2) and a second substrate section including a second plurality of layers attached to each other. The second plurality of layers have a second orientation (x3). The first orientation (x2) and the second orientation (x3) are angled (?) with respect to one another.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: August 30, 2016
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Dominic Gschwend, Keiji Matsumoto, Stefano S. Oggioni, Gerd Schlottig, Timo J. Tick, Jonas Zuercher
  • Patent number: 9397042
    Abstract: A chip package comprising: a chip stack comprising at least one chip; and a thermal power plane comprising at least two substantially parallel dielectric layers having conductive connectors patterned therein, the at least two dielectric layers electrically connected by vias, wherein said vias are substantially perpendicular to the at least two dielectric layers, wherein each of the vias electrically connects to a connector patterned within a dielectric layer of the at least two dielectric layers at a via connection, wherein an inductor used in supplying power to the at least one chip is formed from the vias and from connectors electrically connecting via connections on each of the at least two dielectric layers.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: July 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Thomas J Brunschwiler, Michele Castriotta, Rachel Gordin, Stefano Sergio Oggioni, Gerd Schlottig
  • Patent number: 9389362
    Abstract: Embodiments include a method for interconnecting components of an optical circuit. The method includes arranging the components on a support layer and embedding them within a material, such that portions of the material that is between the components contact the support layer. The obtained components are positioned with a certain inaccuracy with respect to ideal nominal positions thereof. Next, the support layer is removed to reveal one side of the components, on which side the components are level with said portions of said material. Positions of the components are identified and a set of optical polymer waveguides are adaptively fabricated, on the one side, so as for each of the fabricated polymer waveguides to optically connect subsets of two or more of the components, according to the identified positions of the components. The present invention is further directed to related optical circuits or electro-optical circuits of interconnected components.
    Type: Grant
    Filed: November 16, 2015
    Date of Patent: July 12, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Brunschwiler, Antonio La Porta, Bert J. Offrein, Jonas R. Weiss
  • Publication number: 20160165758
    Abstract: A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
    Type: Application
    Filed: February 11, 2016
    Publication date: June 9, 2016
    Inventors: Thomas J. Brunschwiler, Evan G. Colgan, John U. Knickerbocker, Bruno Michael, Chin Lee Ong, Cornelia K. Tsang
  • Publication number: 20160126202
    Abstract: A bridging arrangement includes a first and a second surface defining a gap therebetween. At least one surface of the first and second surface has an anisotropic energy landscape. A plurality of particles defines a path between the first and second surface bridging the gap.
    Type: Application
    Filed: October 12, 2015
    Publication date: May 5, 2016
    Inventors: Thomas J. Brunschwiler, Brian Burg, Richard Dixon, Helge Kristiansen, Piotr Warszynski, Jonas Zuercher
  • Patent number: 9313921
    Abstract: A package structure to implement two-phase cooling includes a chip stack disposed on a substrate, and a package lid that encloses the chip stack. The chip stack includes a plurality of conjoined chips, a central inlet manifold formed through a central region of the chip stack, and a peripheral outlet manifold. The central input manifold includes inlet nozzles to feed liquid coolant into flow cavities formed between adjacent conjoined chips. The peripheral outlet manifold outputs heated liquid and vapor from the flow cavities. The package lid includes a central coolant supply inlet aligned to the central inlet manifold, and a peripheral liquid-vapor outlet to output heated liquid and vapor that exits from the peripheral outlet manifold. Guiding walls may be included in the flow cavities to guide a flow of liquid and vapor, and the guiding walls can be arranged to form radial flow channels that are feed by different inlet nozzles of the central inlet manifold.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Evan G. Colgan, John U. Knickerbocker, Bruno Michael, Chin Lee Ong, Cornelia K. Tsang
  • Publication number: 20160059367
    Abstract: Conduit connectors for liquid manifolds and methods of fabrication are provided. In one embodiment, a conduit connector is integrated, at least in part, within a liquid manifold, and includes a conduit-receiving opening or socket and at least one releasable retention component. The conduit-receiving opening is disposed within the liquid manifold and in fluid communication with at least one liquid-carrying channel of the liquid manifold. The releasable retention component(s) is selectively operative to threadlessly secure in a fluid-tight manner a conduit within the conduit-receiving opening in fluid communication with the at least one liquid-carrying channel of the liquid manifold to facilitate flow of liquid through the liquid-carrying channel(s), or to release the conduit from the conduit-receiving opening of the conduit connector. The releasable retention component(s) resides at least partially within the liquid manifold when operatively holding the conduit within the conduit-receiving opening.
    Type: Application
    Filed: August 12, 2015
    Publication date: March 3, 2016
    Inventors: Thomas J. BRUNSCHWILER, Evan G. COLGAN, Michael J. ELLSWORTH, JR., Gerd SCHLOTTIG
  • Publication number: 20160061364
    Abstract: Conduit connectors for liquid manifolds and methods of fabrication are provided. In one embodiment, a conduit connector is integrated, at least in part, within a liquid manifold, and includes a conduit-receiving opening or socket and at least one releasable retention component. The conduit-receiving opening is disposed within the liquid manifold and in fluid communication with at least one liquid-carrying channel of the liquid manifold. The releasable retention component(s) is selectively operative to threadlessly secure in a fluid-tight manner a conduit within the conduit-receiving opening in fluid communication with the at least one liquid-carrying channel of the liquid manifold to facilitate flow of liquid through the liquid-carrying channel(s), or to release the conduit from the conduit-receiving opening of the conduit connector. The releasable retention component(s) resides at least partially within the liquid manifold when operatively holding the conduit within the conduit-receiving opening.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Thomas J. BRUNSCHWILER, Evan G. COLGAN, Michael J. ELLSWORTH, JR., Gerd SCHLOTTIG
  • Patent number: 9230832
    Abstract: A method for manufacturing a filled cavity between a first surface and a second surface. The steps of the method include: providing a first surface and a second surface; applying on the first surface and/or the second surface a filling material that has a carrier fluid and necking particles; providing spacer elements for defining a width of a cavity between the first and second surfaces; bringing the first and second surfaces together to deform the filling material such that at least one spacer element is held between the first and second surfaces; and removing the carrier fluid such that necking particles attach in a contact region of at least one spacer element with the first surface or the second surface to form necks.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: January 5, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Brunschwiler, Stephan Paredes, Gerd Schlottig, Heiko Wolf
  • Patent number: 9230830
    Abstract: A bridging arrangement for coupling a first terminal to a second terminal includes a plurality of particles of a first type forming at least one path between the first terminal and the second terminal, wherein the particles of the first type are attached to each other; a plurality of particles of a second type arranged in a vicinity of a contact region between a first particle of the first type and a second particle of the first type, wherein at least a portion of the plurality of particles of the second type is attached to the first particle of the first type and the second particle of the first type.
    Type: Grant
    Filed: February 9, 2015
    Date of Patent: January 5, 2016
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Javier V. Goicochea, Cyrill Kuemin, Walter H. Riess, Heiko Wolf
  • Publication number: 20150249022
    Abstract: A method for manufacturing a filled cavity between a first surface and a second surface. The steps of the method include: providing a first surface and a second surface; applying on the first surface and/or the second surface a filling material that has a carrier fluid and necking particles; providing spacer elements for defining a width of a cavity between the first and second surfaces; bringing the first and second surfaces together to deform the filling material such that at least one spacer element is held between the first and second surfaces; and removing the carrier fluid such that necking particles attach in a contact region of at least one spacer element with the first surface or the second surface to form necks.
    Type: Application
    Filed: March 3, 2014
    Publication date: September 3, 2015
    Applicant: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Stephan Paredes, Gerd Schlottig, Heiko Wolf
  • Publication number: 20150237729
    Abstract: A substrate device for electronic circuits or devices includes a first substrate section including a first plurality of layers attached to each other having a first orientation (x2) and a second substrate section including a second plurality of layers attached to each other. The second plurality of layers have a second orientation (x3). The first orientation (x2) and the second orientation (x3) are angled (?) with respect to one another.
    Type: Application
    Filed: January 19, 2015
    Publication date: August 20, 2015
    Inventors: Thomas J. Brunschwiler, Dominic Gschwend, Keiji Matsumoto, Stefano S. Oggioni, Gerd Schlottig, Timo J. Tick, Jonas Zuercher
  • Publication number: 20150206838
    Abstract: A chip package comprising: a chip stack comprising at least one chip; and a thermal power plane comprising at least two substantially parallel dielectric layers having conductive connectors patterned therein, the at least two dielectric layers electrically connected by vias, wherein said vias are substantially perpendicular to the at least two dielectric layers, wherein each of the vias electrically connects to a connector patterned within a dielectric layer of the at least two dielectric layers at a via connection, wherein an inductor used in supplying power to the at least one chip is formed from the vias and from connectors electrically connecting via connections on each of the at least two dielectric layers.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 23, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: THOMAS J. BRUNSCHWILER, MICHELE CASTRIOTTA, RACHEL GORDIN, STEFANO SERGIO OGGIONI, GERD SCHLOTTIG
  • Publication number: 20150195955
    Abstract: The invention relates to a cooling arrangement comprising a heat spreader (2) comprising a first surface (5), a second surface (8), at least one heat absorption chamber (9) and at least one heat dissipation chamber (10), the at least one heat absorption chamber (9) being in thermal contact with the first surface (5) and the at least one heat dissipation chamber (10) being in thermal contact with the second surface (8) and hydraulically coupled to the at least one heat absorption chamber (9). A cooling fluid (13) can be driven from the heat absorption chamber (9) to the heat dissipation chamber (10) using a plurality of flow patterns for cooling the first surface (5).
    Type: Application
    Filed: February 26, 2015
    Publication date: July 9, 2015
    Inventors: Thomas J. Brunschwiler, Urs Kloter, Ryan Joseph Linderman, Bruno Michel, Hugo E. Rothuizen, Reio Waelchli
  • Publication number: 20150176911
    Abstract: The invention relates to a cooling arrangement comprising a heat spreader (2) comprising a first surface (5), a second surface (8), at least one heat absorption chamber (9) and at least one heat dissipation chamber (10), the at least one heat absorption chamber (9) being in thermal contact with the first surface (5) and the at least one heat dissipation chamber (10) being in thermal contact with the second surface (8) and hydraulically coupled to the at least one heat absorption chamber (9). A cooling fluid (13) can be driven from the heat absorption chamber (9) to the heat dissipation chamber (10) using a plurality of flow patterns for cooling the first surface (5).
    Type: Application
    Filed: February 26, 2015
    Publication date: June 25, 2015
    Inventors: Thomas J. Brunschwiler, Urs Kater, Ryan Joseph Linderman, Bruno Michel, Hugo E. Rothuizen, Reio Waelchli
  • Patent number: 9066460
    Abstract: Cooled electronic assemblies and methods of fabrication are provided. In one embodiment, the assembly includes a coolant-cooled electronic module with one or more electronic component(s), and one or more coolant-carrying channel(s) integrated within the module, and configured to facilitate flow of coolant through the module for cooling the electronic component(s). In addition, the assembly includes a coolant manifold structure detachably coupled to the electronic module. The manifold structure facilitates flow of coolant to the coolant-carrying channel(s) of the electronic module, and the coolant manifold structure and electronic module include adjoining surfaces. One surface of the adjoining surfaces includes a plurality of coolant capillaries or passages. The coolant capillaries are sized to inhibit, for instance, via surface tension, leaking of coolant therefrom at the one surface with decoupling of the coolant manifold structure and electronic module along the adjoining surfaces.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: June 23, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Thomas J. Brunschwiler, Evan G. Colgan, Michael J. Ellsworth, Jr., Werner Escher, Ingmar Meijer, Stephen Paredes, Gerd Schlottig, Jeffrey A. Zitz
  • Patent number: 9054074
    Abstract: A series of hierarchical channels are formed in a first member surface of a first member using a continuous-feed manufacturing process. The channels are configured to control particle stacking. The first member is pressed to a second member with a layer of particle-filled viscous material between the first member surface and a second member surface of the second member. An inventive assembly includes mating surfaces with at least one surface formed with a series of parallel hierarchical channels configured to control stacking of the particles during pressing together of the surfaces. The surface is substantially free of any other hierarchical channels formed thereon.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: June 9, 2015
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Ryan J. Linderman, Erich M. Ruetsche