Patents by Inventor Thomas J. Gieseke

Thomas J. Gieseke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11112213
    Abstract: An adapter cage is provided for a compressed gas launcher to multiply launch velocity. Kinematics of wheels integral to the adapter cage results in a doubling of the pusher plate velocity as that motion is imparted on a light-weight launch vehicle. The wheels of the adapter cage can press against the launch vehicle and the wheels are pressed against the walls of the launcher for employing friction at the interface of the wheels and the inner surface of the launcher to transfer motion to force out a muzzle cap of the launcher and to enable launch of the launch vehicle.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: September 7, 2021
    Inventor: Thomas J Gieseke
  • Patent number: 11104405
    Abstract: An apparatus for creating on-command buoyancy is provided with an elastically deformable and axially elongated watertight hollow shell having a plurality of leaf springs and enveloped by a flexible skin. When flattened, the shell has a small internal volume and is negatively buoyant. The hollow shell is held in this position by a latch mechanism. When the mechanism is released, the leaf springs expand to increase the internal volume of the shell. In this state, the system is buoyant. A release mechanism for the latch bar is provided in a forward closure to permit transition from negatively buoyant to a buoyant configuration when an external signal is received.
    Type: Grant
    Filed: December 2, 2020
    Date of Patent: August 31, 2021
    Inventor: Thomas J Gieseke
  • Patent number: 10746495
    Abstract: An impulse launcher is provided with a motor to store rotational kinetic energy in a flywheel. The stored kinetic energy is released using a planetary gear transmission that links the flywheel to a drive shaft. The kinetic energy is released when the planetary gear carrier is decelerated using a brake. The planetary gear carrier deceleration forces rotational acceleration of the drive shaft and deceleration of the flywheel. The drive shaft turns a primary drive sprocket and a secondary drive sprocket which pulls a studded drive belt which in turn drives a projectile located between the studded belt and a guide. The planetary gear system and belt drive allow rapid transfer of energy from the flywheel to a projectile.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: August 18, 2020
    Inventor: Thomas J Gieseke
  • Patent number: 10704538
    Abstract: An impulse pump is provided with a low power motor to store rotational kinetic energy in a flywheel. The stored kinetic energy is released using a planetary gear transmission that links the flywheel to a pusher shaft. The kinetic energy is released when the planetary gear carrier is decelerated using a caliper brake. The planetary gear carrier deceleration forces rotational acceleration of the pusher shaft and deceleration of the flywheel. Through a cam roller contact point between the pusher shaft and the cam raceway on the plunger; the rotational motion of the pusher shaft is converted to linear and translational motion of the plunger. The translational motion of the plunger allows impulse jet energy to be rapidly released from a nozzle of the pump.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: July 7, 2020
    Inventor: Thomas J Gieseke
  • Patent number: 10345010
    Abstract: The present invention includes a heat exchanger reactive to external and internal temperatures for carrying a working fluid, including two pairs of nested pipes; each pair including one pipe with a channel portion and a stress relief portion and a second pipe with just a channel portion, one of said pipes enclosing the other with an interference fit and both pipes having different coefficients of thermal expansion. The first pair of pipes positioned co-axially with and encompassing the second pair. A fluid is positioned in the space defined by the inner surface of outer pair of pipes and the outer surface of inner pair of pipes. The two pipe pairs have positions responsive to the internal and external temperatures in which the space defined by pipe pairs is either minimized or maximized by expansion and contraction of the pipe pairs caused by differences in coefficients of thermal expansion.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: July 9, 2019
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J Gieseke
  • Publication number: 20190024645
    Abstract: An impulse pump is provided with a low power motor to store rotational kinetic energy in a flywheel. The stored kinetic energy is released using a planetary gear transmission that links the flywheel to a pusher shaft. The kinetic energy is released when the planetary gear carrier is decelerated using a caliper brake. The planetary gear carrier deceleration forces rotational acceleration of the pusher shaft and deceleration of the flywheel. Through a cam roller contact point between the pusher shaft and the cam raceway on the plunger; the rotational motion of the pusher shaft is converted to linear and translational motion of the plunger. The translational motion of the plunger allows impulse jet energy to be rapidly released from a nozzle of the pump.
    Type: Application
    Filed: September 24, 2018
    Publication date: January 24, 2019
    Inventor: Thomas J. Gieseke
  • Patent number: 10139137
    Abstract: The present invention includes a heat exchanger reactive to external and internal temperatures for carrying a working fluid, including two pairs of nested pipes; each pair including one pipe with a channel portion and a stress relief portion and a second pipe with just a channel portion, one of said pipes enclosing the other with an interference fit and both pipes having different coefficients of thermal expansion. The first pair of pipes positioned co-axially with and encompassing the second pair. A fluid is positioned in the space defined by the inner surface of outer pair of pipes and the outer surface of inner pair of pipes. The two pipe pairs have positions responsive to the internal and external temperatures in which the space defined by pipe pairs is either minimized or maximized by expansion and contraction of the pipe pairs caused by differences in coefficients of thermal expansion.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: November 27, 2018
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J Gieseke
  • Patent number: 10113538
    Abstract: An impulse pump is provided with a low power motor to store rotational kinetic energy in a flywheel. The stored kinetic energy is released using a planetary gear transmission that links the flywheel to a pusher shaft. The kinetic energy is released when the planetary gear carrier is decelerated using a caliper brake. The planetary gear carrier deceleration forces rotational acceleration of the pusher shaft and deceleration of the flywheel. Through a cam roller contact point between the pusher shaft and the cam raceway on the plunger; the rotational motion of the pusher shaft is converted to linear and translational motion of the plunger. The translational motion of the plunger allows impulse jet energy to be rapidly released from a nozzle of the pump.
    Type: Grant
    Filed: June 17, 2016
    Date of Patent: October 30, 2018
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J Gieseke
  • Patent number: 8300501
    Abstract: A system for three-dimensional tracking of high speed undersea projectiles may utilize a distributed field of randomly positioned passive acoustic sensors. The system measures variables related to the pressure field generated by a supercavitating projectile in flight wherein the amplitude of the pressure generated at a point in space is related to the projectile dimensions, velocity, and trajectory. The system iteratively processes data from the sensors to measure launch velocity, flight direction (trajectory), ballistic coefficient (drag), and/or maximum range.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: October 30, 2012
    Assignee: The United States of America as represented by the Scretary of the Navy
    Inventors: Abraham N. Varghese, Robert Kuklinski, Thomas J. Gieseke
  • Patent number: 8120992
    Abstract: A method for localizing the range and bearing of a distant underwater object includes firing a preselected number of supercavitating projectiles sequentially from a firing location such that each projectile tracks along substantially the same trajectory. Supercavitating pellets are dispersed from a projectile at a pre-selected range. Acoustic signals are sensed to detect acoustic signals caused by supercavitating pellet impact with an object. These signals can be processed to determine the range and bearing to the object. In further steps the range and bearing can be used to aim the projectiles.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 21, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Robert Kuklinski, Thomas J. Gieseke
  • Patent number: 8088162
    Abstract: A synthetic muscle comprises an outer layer having an interior filled with a proton containing electrolyte. A first electrode extends into the interior, and a second electrode extends through the interior. The second electrode is attached to the outer layer at two locations. An ion selective microporous membrane extends through the interior along the length of the second electrode and is also attached to the out layer at the two locations. The ion selective membrane is also attached to the second electrode at a plurality of points along its length, defining a plurality of pockets of the ion selective membrane. The ion elective membrane is generally disposed between the two electrodes. The two electrodes are in communication through a power source. Using the power source, an electroosmotic flow is established across the ion exchange membrane from the first electrode to the second electrode, inflating the pockets and constricting the outer layer.
    Type: Grant
    Filed: September 28, 2009
    Date of Patent: January 3, 2012
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Thomas J. Gieseke, Charles J. Patrissi
  • Patent number: 8006619
    Abstract: An underwater supercavitating projectile includes means to form ripples on its surrounding cavity so as to provide well-defined disturbances of the cavity boundary. As the ripples move aft of the supercavitating projectile and into the wake behind the advancing projectile, the ripples detach to form a pattern of vapor bubbles in the wake that are distinct in both size and regularity from the typical vapor bubbles formed as the cavity collapses behind the advecting projectile. Sensors record the track of the projectile along its path based on the distinct acoustic signature of the vapor bubbles. Combined with the acoustic echo from a target, the relative distance of the projectile to the target can be determined using methods known in the art. Multiple projectile trajectories are used to increase the ability to resolve the target by adjusting the aiming of the projectiles to reduce the relative distance.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: August 30, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Robert Kuklinski, Thomas J. Gieseke
  • Patent number: 7975614
    Abstract: A high velocity acoustic signal producing underwater shotgun system for dispersing a plurality of relatively small supercavitating projectiles over a wide spatial field at long range using the dynamics of cavity collapse for better target localization in underwater mine clearance. A typical supercavitating projectile design is enhanced to produce a two-staged projectile in order to accomplish this innovation. The first stage of the two stage design allows for the long range firing underwater typical of a supercavitating projectile while the second stage permits the coverage of a wide area with a plurality of small supercavitating projectiles just as the first stage projectile reaches its fixed range. A distinctive feature of the radiated noise from a supercavitating projectile contacting a solid object is used in conjunction with the two stage projectile design to provide a system for underwater mine clearance verification.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: July 12, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Robert Kuklinski, Thomas J. Gieseke
  • Patent number: 7966936
    Abstract: A high speed underwater projectile configuration that includes a cylindrical telescoping cavitator design capable of providing projectile nose shape change where such change to the projectile nose tip geometry results in supercavitation and a concomitant vaporous cavity in the water that reduces projectile drag resistance while maximizing projectile range and where the projectile nose tip further includes a retractable cavitator piston feature. The projectile nose is designed to house a cylindrical cavitator piston that protrudes forward from the projectile and is held in place until launch. Velocity induced hydrodynamic forces on the forward face of this cavitator piston cause the piston to start moving aft and to gradually cause the piston to retract into the projectile nose, until a larger, secondary cavitator is exposed to the vaporous cavity.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 28, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J. Gieseke
  • Publication number: 20110149691
    Abstract: A system for three-dimensional tracking of high speed undersea projectiles may utilize a distributed field of randomly positioned passive acoustic sensors. The system measures variables related to the pressure field generated by a supercavitating projectile in flight wherein the amplitude of the pressure generated at a point in space is related to the projectile dimensions, velocity, and trajectory. The system iteratively processes data from the sensors to measure launch velocity, flight direction (trajectory), ballistic coefficient (drag), and/or maximum range.
    Type: Application
    Filed: December 23, 2009
    Publication date: June 23, 2011
    Inventors: Abraham N. Varghese, Robert Kuklinski, Thomas J. Gieseke
  • Patent number: 7926587
    Abstract: A water jet assembly and method of use is provided comprising a tank with cutting fluid, fuel and oxidizer lines, and a tank discharge lines. In operation, the tank is filled with oxidizer; the oxidizer line is closed and cutting fluid is supplied compressing the oxidizer. When the fluid reaches a level, the fluid line is closed and fuel is injected. A spark generator ignites the fuel/oxidizer mixture thereby raising the tank pressure. As the pressure rises, a low pressure valve simultaneously closes at a prescribed level. The vent line and a discharge to a nozzle are opened thereby, forming a gas bubble. When the bubble reaches a desired size and pressure drops below a level, the vent closes, allowing combustion expansion to force fluid through the nozzle to form a cutting jet.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: April 19, 2011
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J. Gieseke
  • Publication number: 20110061554
    Abstract: A high velocity acoustic signal producing underwater shotgun system for dispersing a plurality of relatively small supercavitating projectiles over a wide spatial field at long range using the dynamics of cavity collapse for better target localization in underwater mine clearance. A typical supercavitating projectile design is enhanced to produce a two-staged projectile in order to accomplish this innovation. The first stage of the two stage design allows for the long range firing underwater typical of a supercavitating projectile while the second stage permits the coverage of a wide area with a plurality of small supercavitating projectiles just as the first stage projectile reaches its fixed range. A distinctive feature of the radiated noise from a supercavitating projectile contacting a solid object is used in conjunction with the two stage projectile design to provide a system for underwater mine clearance verification.
    Type: Application
    Filed: September 16, 2009
    Publication date: March 17, 2011
    Inventors: Robert Kuklinski, Thomas J. Gieseke
  • Publication number: 20090031873
    Abstract: A water jet assembly and method of use comprising a tank with cutting fluid, fuel and oxidizer lines, and a tank discharge lines. In operation, the tank is filled with oxidizer; the oxidizer line is closed and cutting fluid is supplied compressing the oxidizer. When the fluid reaches a level, the fluid line is closed and fuel is injected. A spark generator ignites the fuel/oxidizer mixture thereby raising the tank pressure. As the pressure rises, a low pressure valve simultaneously closes at a prescribed level. The vent line and a discharge to a nozzle are opened thereby, forming a gas bubble. When the bubble reaches a desired size and pressure drops below a level, the vent closes, allowing combustion expansion to force fluid through the nozzle to form a cutting jet. The bubble allows the jet to retain coherence between the nozzle and a cutting surface.
    Type: Application
    Filed: April 28, 2008
    Publication date: February 5, 2009
    Inventor: Thomas J. Gieseke
  • Patent number: 7392733
    Abstract: A projectile based targeting system for underwater objects includes a trainable gun terminal mounted in a waterproof housing. The gun terminal includes plural gun barrels terminating in waterproof breeches. Noise generating projectiles are launched from the gun barrels, and a fire control system selectively fires the projectiles from each of the plural gun barrels in a noise pattern. A host controller detects and processes noise generated by a launched pattern of the noise generating projectiles to give information about the objects. The projectiles each include a void region connected to an outer surface of the projectile by a hole formed in a neck of the projectile. Launching of the projectile creates a vaporous cavity around the projectile and thus the hole, thereby causing the void region to resonate at a noise generating frequency.
    Type: Grant
    Filed: September 20, 2004
    Date of Patent: July 1, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Robert Kuklinski, Thomas J. Gieseke
  • Patent number: 7373883
    Abstract: A projectile is provided that includes a body having a front tip portion and a rear end portion. A combustion chamber base plate is operatively arranged with the rear end portion of the body and defines a combustion chamber. At least one radial discharge aperture is partially defined by the combustion chamber base plate and is arranged in fluid communication with the combustion chamber. A gas generated by igniting a combustible material is discharged through the at least one radial discharge aperture. The discharged gas impinges against a wall of a cavity formed by the moving projectile to form a reactive force that stabilizes the projectile thereby reducing the occurrence of tail-slap.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: May 20, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thomas J. Gieseke