Patents by Inventor Thomas J. Kempa

Thomas J. Kempa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10435817
    Abstract: The present invention generally relates to nanoscale wires, and to methods of producing nanoscale wires. In some aspects, the nanoscale wires are nanowires comprising a core which is continuous and a shell which may be continuous or discontinuous, and/or may have regions having different cross-sectional areas. In some embodiments, the shell regions are produced by passing the shell material (or a precursor thereof) over a core nanoscale wire under conditions in which Plateau-Raleigh crystal growth occurs, which can lead to non-homogenous deposition of the shell material on different regions of the core. The core and the shell each independently may comprise semiconductors, and/or non-semiconductor materials such as semiconductor oxides, metals, polymers, or the like. Other embodiments are generally directed to systems and methods of making or using such nanoscale wires, devices containing such nanoscale wires, or the like.
    Type: Grant
    Filed: May 6, 2015
    Date of Patent: October 8, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Robert Day, Max Nathan Mankin, Ruixuan Gao, Thomas J. Kempa
  • Patent number: 10049871
    Abstract: The present invention generally relates to nanoscale wires, including anisotropic deposition in nanoscale wires. In one set of embodiments, material may be deposited on certain portions of a nanoscale wire, e.g., anisotropically. For example, material may be deposited on a first facet of a crystalline nanoscale wire but not on a second facet. In some cases, additional materials may be deposited thereon, and/or the portions of the nanoscale wire may be removed, e.g., to produce vacant regions within the nanoscale wire, which may contain gas or other species. Other embodiments of the invention may be directed to articles made thereby, devices containing such nanoscale wires, kits involving such nanoscale wires, or the like.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: August 14, 2018
    Assignees: President and Fellows of Harvard College, Korea University
    Inventors: Charles M. Lieber, Sun-Kyung Kim, Robert Day, Hong-Gyu Park, Thomas J. Kempa
  • Publication number: 20170073841
    Abstract: The present invention generally relates to nanoscale wires, and to methods of producing nanoscale wires. In some aspects, the nanoscale wires are nanowires comprising a core which is continuous and a shell which may be continuous or discontinuous, and/or may have regions having different cross-sectional areas. In some embodiments, the shell regions are produced by passing the shell material (or a precursor thereof) over a core nanoscale wire under conditions in which Plateau-Raleigh crystal growth occurs, which can lead to non-homogenous deposition of the shell material on different regions of the core. The core and the shell each independently may comprise semiconductors, and/or non-semiconductor materials such as semiconductor oxides, metals, polymers, or the like. Other embodiments are generally directed to systems and methods of making or using such nanoscale wires, devices containing such nanoscale wires, or the like.
    Type: Application
    Filed: May 6, 2015
    Publication date: March 16, 2017
    Inventors: Charles M. Lieber, Robert Day, Max Nathan Mankin, Ruixuan Gao, Thomas J. Kempa
  • Publication number: 20160282303
    Abstract: The present invention generally relates to nanoscale devices and methods, including bent nanowires and other bent nanoscale objects, and in particular, the ability to probe cells with nanoscale objects. In some aspects, nanoscale objects, including nanowires, are provided that facilitate cell probing, e.g. nanowires that are surface modified such that cells can fuse with the nanowires. Devices including nanoscale objects are provided that allow small or large scale (e.g., multiplexed) probing of cells, and related methods of making such nanoscale objects and devices, and methods of investigating cells, are provided by certain embodiments of the invention. In a related set of embodiments, the present invention is generally related to bent nanowires and other bent nanoscale objects. For instance, in one aspect, the present invention is generally related to a semiconductor nanoscale wire having at least one kink. The semiconductor nanoscale wire may be formed out of any suitable semiconductor, e.g.
    Type: Application
    Filed: February 18, 2016
    Publication date: September 29, 2016
    Inventors: Charles M. Lieber, Bozhi Tian, Ping Xie, Thomas J. Kempa, Itzhaq Cohen-Karni, Quan Qing, Xiaojie Duan
  • Patent number: 9297796
    Abstract: Kinked nanowires are used for measuring electrical potentials inside simple cells. An improved intracellular entrance is achieved by modifying the kinked nanowires with phospholipids.
    Type: Grant
    Filed: September 24, 2010
    Date of Patent: March 29, 2016
    Assignee: President and Fellows of Harvard College
    Inventors: Bozhi Tian, Ping Xie, Thomas J. Kempa, Charles M. Lieber, Itzhaq Cohen-Karni, Quan Qing, Xiaojie Duan
  • Publication number: 20150380244
    Abstract: The present invention generally relates to nanoscale wires, including anisotropic deposition in nanoscale wires. In one set of embodiments, material may be deposited on certain portions of a nanoscale wire, e.g., anisotropically. For example, material may be deposited on a first facet of a crystalline nanoscale wire but not on a isotropic second facet. In some cases, additional materials may be deposited thereon, and/or the portions of the nanoscale wire may be removed, e.g., to produce vacant regions within the nanoscale wire, which may contain gas or other species. Other embodiments of the invention may be directed to articles made thereby, devices containing such nanoscale wires, kits involving such nanoscale wires, or the like.
    Type: Application
    Filed: February 4, 2014
    Publication date: December 31, 2015
    Inventors: Charles M. LIEBER, Sun-Kyung KIM, Robert DAY, Hong-Gyu PARK, Thomas J. KEMPA
  • Publication number: 20120267604
    Abstract: Kinked nanowires are used for measuring electrical potentials inside simple cells. An improved intracellular entrance is achieved by modifying the kinked nanowires with phospholipids.
    Type: Application
    Filed: September 24, 2010
    Publication date: October 25, 2012
    Inventors: Bozhi Tian, Ping Xie, Thomas J. Kempa, Charles M. Lieber, Itzhaq Cohen-Karni, Quan Qing, Xiaojie Duan