Patents by Inventor Thomas Joseph Dannhauser

Thomas Joseph Dannhauser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10919328
    Abstract: Inkjet printed articles can be made by providing an inkjet receiving medium comprising a substrate and a topcoat layer, and inkjet printing an aqueous pigment-based ink onto the topcoat layer. The topcoat layer has: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of ?R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. The melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: February 16, 2021
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Mark Edward Irving, Thomas Joseph Dannhauser
  • Patent number: 10858530
    Abstract: An inkjet receiving medium having enhanced surface properties has a substrate and a topcoat layer disposed thereon. The topcoat layer has: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of less than or equal to R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. The melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 8, 2020
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas Joseph Dannhauser, Mark Edward Irving
  • Patent number: 10858529
    Abstract: An aqueous composition can be used for pre-treating a substrate prior to inkjet printing. This composition includes: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of less than or equal to R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. Moreover, the melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: December 8, 2020
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Mark Edward Irving, Thomas Joseph Dannhauser
  • Patent number: 10730331
    Abstract: Inkjet receiving medium are prepared by disposing an aqueous composition onto at least one surface of a substrate to provide a topcoat layer. The aqueous composition has: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of less than or equal to R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. The melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: August 4, 2020
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas Joseph Dannhauser, Mark Edward Irving
  • Publication number: 20200062987
    Abstract: Inkjet receiving medium are prepared by disposing an aqueous composition onto at least one surface of a substrate to provide a topcoat layer. The aqueous composition has: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of less than or equal to R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. The melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Thomas Joseph Dannhauser, Mark Edward lrving
  • Publication number: 20200062017
    Abstract: Inkjet printed articles can be made by providing an inkjet receiving medium comprising a substrate and a topcoat layer, and inkjet printing an aqueous pigment-based ink onto the topcoat layer. The topcoat layer has: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of ?R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. The melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Mark Edward Irving, Thomas Joseph Dannhauser
  • Publication number: 20200062986
    Abstract: An inkjet receiving medium having enhanced surface properties has a substrate and a topcoat layer disposed thereon. The topcoat layer has: (a) one or more water-soluble salts of a multivalent metal cation; and (b) composite particles having a Rockwell Hardness of less than or equal to R90 and each of the composite particles comprising domains of a (i) first organic polymer and domains of a (ii) second organic polymer. The domains of the (ii) second organic polymer are dispersed within the domains of the (i) first organic polymer. The melting point of the (i) first organic polymer is lower than the melting point of the (ii) second organic polymer. The weight ratio of the (i) first organic polymer to the (ii) second organic polymer is chosen such that the (b) composite particles have a density of 1.0-1.5 g/ml.
    Type: Application
    Filed: August 21, 2018
    Publication date: February 27, 2020
    Inventors: Thomas Joseph Dannhauser, Mark Edward Irving
  • Patent number: 9573349
    Abstract: In accordance with the present invention, there is provided a multi-layered structure includes: a) a water-impermeable substrate; b) a first layer on at least one surface of the substrate comprising a water-based tie-layer composition; c) a second layer formed over the first layer, wherein the second layer is a water-based ink-receptive composition includes: i) a multivalent metal salt; and ii) a hydrophilic binder polymer; d) a third layer including at least one water-based ink composition deposited in a single pass by an inkjet printing process, wherein the water-based ink composition includes an anionically stabilized, water-dispersible pigment; and e) additional layers deposited over the one or more ink layers and exposed second layer, the additional layers selected from one or more of the following compositions: i) an opaque white layer; ii) a protective layer; and iii) an adhesive layer, further includes a continuous protective plastic or paper layer adhered thereto.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: February 21, 2017
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas Joseph Dannhauser, Douglas Eugene Bugner, David D. Putnam, Brian L Lindstrom
  • Publication number: 20170028688
    Abstract: In accordance with the present invention, there is provided a multi-layered structure includes: a) a water-impermeable substrate; b) a first layer on at least one surface of the substrate comprising a water-based tie-layer composition; c) a second layer formed over the first layer, wherein the second layer is a water-based ink-receptive composition includes: i) a multivalent metal salt; and ii) a hydrophilic binder polymer; d) a third layer including at least one water-based ink composition deposited in a single pass by an inkjet printing process, wherein the water-based ink composition includes an anionically stabilized, water-dispersible pigment; and e) additional layers deposited over the one or more ink layers and exposed second layer, the additional layers selected from one or more of the following compositions: i) an opaque white layer; ii) a protective layer; and iii) an adhesive layer, further includes a continuous protective plastic or paper layer adhered thereto.
    Type: Application
    Filed: July 30, 2015
    Publication date: February 2, 2017
    Inventors: Thomas Joseph Dannhauser, Douglas Eugene Bugner, David D. Putnam, Brian L Lindstrom
  • Patent number: 9427975
    Abstract: A method for improving durability of aqueous ink deposited on a substrate having multivalent metal salt present at the surface of the substrate is disclosed. The method includes depositing aqueous ink on the surface of the substrate, wherein the aqueous ink is an anionically stabilized pigment ink, drying the substrate to substantially remove the water from the deposited aqueous ink, applying substantially pure water and heat to the dried substrate with deposited aqueous ink, and removing the applied water and heat to return the dried substrate to an ambient temperature and moisture content. The applied substantially pure water and heat are sufficient to cause a significant improvement of the durability of the deposited ink on the substrate.
    Type: Grant
    Filed: June 12, 2014
    Date of Patent: August 30, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Douglas Eugene Bugner, David D. Putnam, Hwei-Ling Yau, Thomas Joseph Dannhauser, Brian L Lindstrom
  • Patent number: 9421808
    Abstract: An inkjet receiving media comprising a substrate having a transparent topmost layer coated thereon at solid content of from 0.3 to 2.5 g/m2, wherein the topmost layer includes from 30-70 wt % of one or more aqueous soluble salts of multivalent metal cations, 5 to 20 wt % of a cross-linked hydrophilic polymer binder, 4 to 12 wt % of a cationic polymer to stabilize 10 to 40 wt % silica that is less than 200 nm is size. Improved optical density, reduced mottle and improved wet abrasion resistance are provided when the receiver is printed with an aqueous pigment-based ink. In further embodiments, the topmost layer can further include high levels of silica that makes the layer porous.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 23, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Wayne Thomas Ferrar, Thomas Joseph Dannhauser, Raouf Botros, Peter G. Bessey, Hwei-Ling Yau
  • Patent number: 9376582
    Abstract: A method of printing with water-based inkjet inks on a water-impermeable, low-surface-energy substrate, includes: a) modifying surface properties of the substrate to increase the surface energy; b) coating the modified surface of the substrate with a first layer comprising a colorless water-based tie-layer composition; c) coating over the first layer with a second layer including a colorless and transparent water-based ink-receptive composition including: i) a water-soluble multivalent metal salt; and ii) a hydrophilic binder polymer; d) depositing directly on the surface of the second layer one or more water-based ink compositions containing an anionically stabilized pigment colorant, wherein the one or more water-based ink compositions are deposited in a predetermined pattern with an inkjet deposition system in response to electrical signals; and e) drying the first and second coated layers and the deposited inks to substantially remove the water.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: June 28, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas Joseph Dannhauser, Douglas Eugene Bugner, David D. Putnam, Brian L Lindstrom
  • Publication number: 20150360480
    Abstract: A method for improving durability of aqueous ink deposited on a substrate having multivalent metal salt present at the surface of the substrate is disclosed. The method includes depositing aqueous ink on the surface of the substrate, wherein the aqueous ink is an anionically stabilized pigment ink, drying the substrate to substantially remove the water from the deposited aqueous ink, applying substantially pure water and heat to the dried substrate with deposited aqueous ink, and removing the applied water and heat to return the dried substrate to an ambient temperature and moisture content. The applied substantially pure water and heat are sufficient to cause a significant improvement of the durability of the deposited ink on the substrate.
    Type: Application
    Filed: June 12, 2014
    Publication date: December 17, 2015
    Inventors: Douglas Eugene Bugner, David D. Putnam, Hwei-Ling Yau, Thomas Joseph Dannhauser, Brian L. Lindstrom
  • Patent number: 9067448
    Abstract: A coating composition for pre-treating a substrate prior to inkjet printing thereon, and an inkjet receiving medium including a substrate and having a topmost layer coated thereon, where the coating composition has a solids content which includes at least 30 wt % of one or more aqueous soluble salts of multivalent metal cations, and particles had primarily of polymer having a Rockwell Hardness of less than R90 and having a mode equivalent spherical diameter of at least about 2 micrometers. When coated, the composition provides at least 0.01 g/m2 of particles included primarily of polymer having a Rockwell Hardness of less than R90 and which have an equivalent spherical diameter of i) at least about 2 micrometers and ii) at least 0.1 micrometer greater than the minimum coated thickness of the topmost layer.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: June 30, 2015
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Thomas Joseph Dannhauser, Yang Xiang, Raouf Botros
  • Publication number: 20140292951
    Abstract: An inkjet receiving media comprising a substrate having a transparent topmost layer coated thereon at solid content of from 0.3 to 2.5 g/m2, wherein the topmost layer includes from 30-70 wt % of one or more aqueous soluble salts of multivalent metal cations, 5 to 20 wt % of a cross-linked hydrophilic polymer binder, 4 to 12 wt % of a cationic polymer to stabilize 10 to 40 wt % silica that is less than 200 nm is size. Improved optical density, reduced mottle and improved wet abrasion resistance are provided when the receiver is printed with an aqueous pigment-based ink. In further embodiments, the topmost layer can further include high levels of silica that makes the layer porous.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 2, 2014
    Inventors: WAYNE THOMAS FERRAR, THOMAS JOSEPH DANNHAUSER, RAOUF BOTROS, PETER G. BESSEY, HWEI-LING YAU
  • Publication number: 20130293647
    Abstract: A coating composition for pre-treating a substrate prior to inkjet printing thereon, and an inkjet receiving medium comprising a substrate and having a topmost layer coated thereon, where the coating composition has a solids content which comprises at least 30 wt % of one or more aqueous soluble salts of multivalent metal cations, and particles comprised primarily of polymer having a Rockwell Hardness of less than R90 and having a mode equivalent spherical diameter of at least about 2 micrometers. When coated, the composition provides at least 0.01 g/m2 of particles comprised primarily of polymer having a Rockwell Hardness of less than R90 and which have an equivalent spherical diameter of i) at least about 2 micrometers and ii) at least 0.1 micrometer greater than the minimum coated thickness of the topmost layer.
    Type: Application
    Filed: May 2, 2012
    Publication date: November 7, 2013
    Inventors: Thomas Joseph Dannhauser, Yang Xiang, Raouf Botros
  • Patent number: 5741633
    Abstract: The invention describes silver halide packet emulsion grains or crystals that are conventionally precipitated using gelatin of a given isoelectric pH, surrounded by a layer of gelatin-grafted-polymer particles wherein the grafted gelatin has a different isoelectric pH and the said gelatin-grafted-polymer particles are optionally chemically bonded to the gelatin surrounding the silver halide microcrystals. Such packet emulsions can form the basis for a mixed-packet color photographic system.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 21, 1998
    Assignee: Eastman Kodak Company
    Inventors: Mark Anthony Whitson, John Derek Lewis, Tienteh Chen, Thomas Joseph Dannhauser, Pranab Bagchi
  • Patent number: 5693461
    Abstract: This invention describes the composition and method of preparation of heteroflocculated packet emulsion clusters containing a light sensitive and selectively photosensitized silver halide emulsion particles and particles of photographic agents such as dye-forming coupler particles. The silver halide emulsion particles are associated with a layer of adsorbed peptizing gelatin with an isoelectric pH of P.sub.1 and the grafted gelatin of the gelatin-grafted-polymer particles comprising the photographic agent has an isoelectric pH of P.sub.2 such that P.sub.1 is different than P.sub.2. At least one of the peptizing and grafted gelatins is an isoing gelatin which is sufficiently derivatized to remove ionic groups thereof such that approaching the isoelectric pH in an aqueous solution of the isoing gelatin causes massive heteroflocculation.
    Type: Grant
    Filed: March 21, 1995
    Date of Patent: December 2, 1997
    Assignee: Eastman Kodak Company
    Inventors: Pranab Bagchi, Tienteh Chen, Thomas Joseph Dannhauser, John Derek Lewis, Mark Anthony Whitson