Patents by Inventor Thomas K. Hickman

Thomas K. Hickman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8838243
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Grant
    Filed: May 14, 2012
    Date of Patent: September 16, 2014
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
  • Patent number: 8463401
    Abstract: In one embodiment, an introducer is provided for implanting an electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: June 11, 2013
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Timothy S. Jones, Terry Daglow, Peter B. Hegi, Thomas K. Hickman
  • Publication number: 20130131758
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Application
    Filed: May 14, 2012
    Publication date: May 23, 2013
    Inventors: Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
  • Publication number: 20120245594
    Abstract: In one embodiment, an introducer is provided for implanting an electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.
    Type: Application
    Filed: June 1, 2012
    Publication date: September 27, 2012
    Inventors: Timothy S. Jones, Terry Daglow, Peter B. Hegi, Thomas K. Hickman
  • Patent number: 8180451
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Grant
    Filed: June 14, 2010
    Date of Patent: May 15, 2012
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
  • Publication number: 20110257660
    Abstract: In one embodiment, an introducer is provided for implanting an electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.
    Type: Application
    Filed: June 23, 2011
    Publication date: October 20, 2011
    Inventors: Timothy S. Jones, Terry Daglow, Peter B. Hegi, Thomas K. Hickman
  • Patent number: 8014873
    Abstract: In one embodiment, an introducer is provided for implanting an electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: September 6, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Timothy S. Jones, Terry Daglow, Peter B. Hegi, Thomas K. Hickman
  • Publication number: 20110208265
    Abstract: Disclosed are systems and methods which provide trial stimulators suited for use interoperatively and during patient trial. Trial stimulator embodiments provide a patient interface and/or clinician interface which appears and functions substantially the same as an interface of a pulse generator controller which will be used after a trial period. A compliance monitor feature may be provided to facilitate verifying the proper use of the trial stimulator during a trial period. A diagnostic feature may be provided to facilitate verifying proper operation of various aspects of a trial stimulator, such as electrode impedance analysis. Trial stimulators of embodiments provide stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera. Embodiments provide for multi-electrode stimulation and multi-stimulation programs.
    Type: Application
    Filed: May 2, 2011
    Publication date: August 25, 2011
    Applicant: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: John H. Erickson, George Van Campen, Patrick M. Cullen, Thomas K. Hickman
  • Publication number: 20110144721
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Application
    Filed: June 14, 2010
    Publication date: June 16, 2011
    Inventors: Thomas K Hickman, Erick D. Engstrom, Matthew J. Brock, John H. Erickson
  • Patent number: 7937158
    Abstract: Disclosed are systems and methods which provide trial stimulators suited for use interoperatively and during patient trial. Trial stimulator embodiments provide a patient interface and/or clinician interface which appears and functions substantially the same as an interface of a pulse generator controller which will be used after a trial period. A compliance monitor feature may be provided to facilitate verifying the proper use of the trial stimulator during a trial period. A diagnostic feature may be provided to facilitate verifying proper operation of various aspects of a trial stimulator, such as electrode impedance analysis. Trial stimulators of embodiments provide stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera. Embodiments provide for multi-electrode stimulation and multi-stimulation programs.
    Type: Grant
    Filed: October 1, 2008
    Date of Patent: May 3, 2011
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John H Erickson, George Van Campen, Patrick M Cullen, Thomas K Hickman
  • Patent number: 7738963
    Abstract: In one embodiment, a method of programming an IPG comprises providing one or several GUI screens on the programmer device, the GUI screens comprising a master amplitude GUI control for controlling amplitudes for stimsets of a stimulation program and one or several balancing GUI controls for controlling amplitudes of each stimset of the stimulation program; communicating one or several commands from the programmer device to the IPG to change the amplitude of all stimsets of the stimulation program in response to manipulation of the master amplitude GUI control, wherein the amplitude of each stimulation set is automatically calculated by a level selected through the master amplitude GUI control and one or several calibration parameters for the respective stimulation set; and automatically recalculating the one or several calibration parameters for a respective stimulation set in response to manipulation of one of the balancing GUI controls and storing the recalculated calibration parameters.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: June 15, 2010
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Thomas K. Hickman, Erik D. Engstrom, Matthew J. Brock, John H. Erickson
  • Publication number: 20090024187
    Abstract: Disclosed are systems and methods which provide trial stimulators suited for use interoperatively and during patient trial. Trial stimulator embodiments provide a patient interface and/or clinician interface which appears and functions substantially the same as an interface of a pulse generator controller which will be used after a trial period. A compliance monitor feature may be provided to facilitate verifying the proper use of the trial stimulator during a trial period. A diagnostic feature may be provided to facilitate verifying proper operation of various aspects of a trial stimulator, such as electrode impedance analysis. Trial stimulators of embodiments provide stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera. Embodiments provide for multi-electrode stimulation and multi-stimulation programs.
    Type: Application
    Filed: October 1, 2008
    Publication date: January 22, 2009
    Applicant: ADVANCED NEUROMODULATION SYSTEMS, INC.
    Inventors: John H. Erickson, George Van Campen, Patrick M. Cullen, Thomas K. Hickman
  • Publication number: 20080188916
    Abstract: In one embodiment, an introducer is provided for implanting an electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the electrical stimulation lead and may be inserted into a human body near the nerve tissue. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.
    Type: Application
    Filed: April 4, 2008
    Publication date: August 7, 2008
    Inventors: Timothy S. Jones, Terry Daglow, Peter B. Hegi, Thomas K. Hickman
  • Patent number: 7359755
    Abstract: In one embodiment, an introducer is provided for implanting a paddle style electrical stimulation lead to enable electrical stimulation of nerve tissue. The introducer includes an outer sheath and an inner penetrator. The outer sheath may accommodate insertion of the paddle style electrical stimulation lead. The inner penetrator is removably housed within the outer sheath and includes an inner channel configured to accommodate a guide wire, a tip end having a shape and size substantially conforming to that of the guide wire, a body region having a shape and size substantially conforming to that of the outer sheath, and one or more transition regions substantially connecting the tip end with the body region. At least a portion of the transition regions of the inner penetrator may flex to substantially follow flexures in the guide wire during advancement of the inner penetrator.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: April 15, 2008
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: Timothy S. Jones, Terry Daglow, Peter B. Hegi, Thomas K. Hickman
  • Patent number: 7359751
    Abstract: Disclosed are systems and methods which provide an external clinician interface, such as through the use of a laptop computer or a personal digital assistant (PDA). The foregoing clinician interface may be used with trial stimulators well suited for use interoperatively and during patient trial. Stimulators of embodiments are adapted for use in providing stimulation to a plurality of tissues and/or areas of the body, such as spinal cord stimulation, deep brain stimulation, etcetera.
    Type: Grant
    Filed: May 5, 2005
    Date of Patent: April 15, 2008
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John H. Erickson, George Van Campen, Patrick M. Cullen, Thomas K. Hickman
  • Patent number: 7254446
    Abstract: A system, method, and computer program product for calibrating a stimulation device such as an implantable pulse generator (IPG). An IPG, whether it is a self-contained implantable pulse generator (SCIPG) or externally-powered implantable pulse generator (EPIPG), communicates with an external programmer to determine the characteristics of the stimuli delivered to the lead electrodes. An external programmer is used with patient feedback to determine initial threshold levels, and using the initial threshold levels, to determine threshold levels for combined electrode arrays.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 7, 2007
    Assignee: Advanced Neuromodulation Systems, Inc.
    Inventors: John H. Erickson, Thomas K. Hickman, Erik D. Engstrom