Patents by Inventor Thomas KORB

Thomas KORB has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240087134
    Abstract: A method identifies ring structures in pillars of high aspect ratio (HAR) structures. For segmentation of rings, a machine learning-logic is used. A two-step training method for the machine learning logic is described.
    Type: Application
    Filed: October 16, 2023
    Publication date: March 14, 2024
    Inventors: Dmitry Klochkov, Jens Timo Neumann, Thomas Korb, Eno Töppe, Johannes Persch, Abhilash Srikantha, Alexander Freytag
  • Patent number: 11915908
    Abstract: The present invention relates to a method for measuring a sample with a microscope, the method comprising the steps of: measuring a tilt of the sample, correcting an orientation of the sample based on the tilt, and scanning the sample.
    Type: Grant
    Filed: October 14, 2021
    Date of Patent: February 27, 2024
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Eugen Foca, Amir Avishai, Dmitry Klochkov, Thomas Korb, Jens Timo Neumann, Keumsil Lee
  • Publication number: 20240038482
    Abstract: The present invention relates to a charged particle beam system comprising a deflection subsystem configured to deflect a charged particle beam in a deflection direction based on a sum of analog signals generated by separate digital to analog conversion of a first digital signal and a second digital signal. The present invention further relates to a method of configuring the charged particle beam system so that each of a plurality of regions of interest can be scanned by varying only the first digital signal while the second digital signal is held constant at a value associated with the respective region of interest. The present invention further relates to a method of recording a ci plurality of images of the regions of interest at the premise of reduced interference due to charge accumulation.
    Type: Application
    Filed: October 12, 2023
    Publication date: February 1, 2024
    Inventors: Eugen Foca, Amir Avishai, Thomas Korb, Daniel Fischer
  • Publication number: 20230408988
    Abstract: A system for automated control of an industrial process system, comprising: a data historian storing measured process data sensed by a plurality of sensors within the industrial process system; a processor; and, memory storing a control engine as computer readable instructions that, when executed by the processor, cause the processor to: receive an artificial intelligence control setpoint for controlling an operating condition of the industrial process system; compare the artificial intelligence control setpoint to a static threshold and a dynamic threshold; and output a control signal, to manipulate the operating condition, as one of the artificial intelligence control setpoint, the static threshold, or the dynamic threshold based on a relationship of the artificial intelligence control setpoint to the static threshold or dynamic threshold.
    Type: Application
    Filed: November 16, 2021
    Publication date: December 21, 2023
    Inventors: Thomas Korb, Chad Carroll, Jose Corcega, Kevin Cooper, Junda Zhu, Mark Vaccari
  • Patent number: 11848172
    Abstract: The present invention relates to a method for measuring a sample with a microscope, the method comprising scanning the sample using a focusing plane having a first angle with respect to a top surface of the sample and computing a confidence distance based on the first angle. The method further comprises selecting at least one among a plurality of alignment markers on the sample for performing a lateral alignment of the scanning step and/or for performing a lateral alignment of an output of the scanning step. In particular, the at least one alignment marker selected at the selecting step is chosen among the alignment markers placed within the confidence distance from an intersection of the focusing plane with the top surface.
    Type: Grant
    Filed: November 9, 2021
    Date of Patent: December 19, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dmitry Klochkov, Chuong Huynh, Thomas Korb, Alex Buxbaum, Amir Avishai
  • Patent number: 11810749
    Abstract: The present invention relates to a charged particle beam system comprising a deflection subsystem configured to deflect a charged particle beam in a deflection direction based on a sum of analog signals generated by separate digital to analog conversion of a first digital signal and a second digital signal. The present invention further relates to a method of configuring the charged particle beam system so that each of a plurality of regions of interest can be scanned by varying only the first digital signal while the second digital signal is held constant at a value associated with the respective region of interest. The present invention further relates to a method of recording a plurality of images of the regions of interest at the premise of reduced interference due to charge accumulation.
    Type: Grant
    Filed: December 6, 2021
    Date of Patent: November 7, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Eugen Foca, Amir Avishai, Thomas Korb, Daniel Fischer
  • Publication number: 20230343619
    Abstract: Semiconductor structures can be investigated, e.g., in an in-line quality check. An x-ray scattering measurement, e.g., CD-SAXS, can be used for wafer metrology. The x-ray scattering measurement can be configured based on a slice-and-imaging tomographic measurement using a dual-beam device, e.g., including a focused ion beam device and a scanning electron microscope.
    Type: Application
    Filed: April 26, 2022
    Publication date: October 26, 2023
    Inventors: Hans-Michael Stiepan, Thomas Korb, Eugen Foca, Alex Buxbaum, Dmitry Klochkov, Jens Timo Neumann
  • Patent number: 11747013
    Abstract: Emissions of NOX and/or CO are reduced at the stack by systems and methods wherein a primary fuel is thoroughly mixed with a specific range of excess combustion air. The primary fuel-air mixture is then discharged and anchored within a combustion chamber of a burner. Further, the systems and methods provide for dynamically controlling NOX content in emissions from a furnace by adjusting the flow of primary fuel and of a secondary stage fuel, and in some cases controlling the amount or placement of combustion air into the furnace.
    Type: Grant
    Filed: October 11, 2022
    Date of Patent: September 5, 2023
    Assignee: John Zink Company, LLC
    Inventors: Chad Carroll, Jaime Erazo, Valeriy Smirnov, Thomas Korb, Mark Vaccari, Sean Battisti, Jose Corcega
  • Publication number: 20230267627
    Abstract: The present disclosure provides a method of transferring alignment information from a first set of images to a second set of images, a respective computer program product and a respective inspection device. A first set of cross-section images in a first imaging mode is obtained, the first cross-section images being taken at times Tai. A second set of cross-section images in a second imaging mode is obtained, the second cross-section images being taken at times Tbj, the times Tbj differing from the times Tai. Obtaining the first and second sets of cross-section images comprises subsequently removing a cross-section surface layer of a sample to make a new cross-section accessible for imaging, and imaging the new cross-section of the sample in the first imaging mode or in the second imaging mode. Switching is performed between the first and second imaging modes while obtaining the first and second sets of cross-section images.
    Type: Application
    Filed: May 1, 2023
    Publication date: August 24, 2023
    Inventors: Thomas Korb, Alex Buxbaum, Eugen Foca, Jens Timo Neumann, Amir Avishai, Dmitry Klochkov
  • Patent number: 11732891
    Abstract: Systems and methods operate to infer a fuel composition in a combustion system. The fuel composition may be inferred by receiving measured operating parameters including one or more of fuel data defining fuel characteristics used in combustion within a heater of the combustion system, emissions data defining emission gasses exiting the heater, airflow data defining ambient air being supplied to the heater and airflow rate of the air within the heater. One or more relationships within the measured operating parameters may be identified that result in a list of potential fuel compositions. One of the potential fuel compositions from the list may be selected having sufficient likelihood of resulting in the measured operating parameters as an inferred fuel composition. The output the inferred fuel composition to a heater controller of the combustion system and used for automatic control thereof.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 22, 2023
    Assignee: ONPOINT TECHNOLOGIES, LLC
    Inventors: Chad Carroll, Thomas Korb, Ryan Morgan, Mark Vaccari
  • Publication number: 20230260105
    Abstract: A method of a defect detection of a plurality of semiconductor structures arranged on a wafer includes obtaining a microscopic image of the wafer. The microscopic image depicts the plurality of semiconductor structures. The method also includes obtaining, from a database, fingerprint data for each base pattern class of a set of base pattern classes associated with respective one or more semiconductor structures of the plurality of semiconductor structures. The method further includes performing the defect detection based on the fingerprint data and the microscopic image.
    Type: Application
    Filed: March 14, 2023
    Publication date: August 17, 2023
    Inventors: Thomas Korb, Philipp Huethwohl, Jens Timo Neumann
  • Patent number: 11728130
    Abstract: A method, including: recording plural images of an object by scanning plural particle beams across the object and detecting signals generated by the particle beams, wherein the plural particle beams are generated by a multi-beam particle microscope; determining plural regions of interest; determining plural image regions in each of the recorded images; determining plural displacement vectors; and determining image distortions based on image data of the recorded images and the determined displacement vectors.
    Type: Grant
    Filed: April 1, 2021
    Date of Patent: August 15, 2023
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Dirk Zeidler, Thomas Korb, Philipp Huethwohl, Jens Timo Neumann, Christof Riedesel, Christian Wojek, Joaquin Correa, Wolfgang Hoegele
  • Patent number: 11719435
    Abstract: Combustion heater control systems and methods that include dynamic safety settings. Current operating parameters of the combustion heater are sensed at a plurality of time intervals and converted into a time-varying signal. The time-varying signal is compared to a burner stability envelope indicating when a burner is likely to enter an unstable state. The unstable state may include huffing, flashback, and/or liftoff. When the burner is likely to enter an unstable state, the combustion heater is controlled to prevent the unstable state.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 8, 2023
    Assignee: Onpoint Technologies, LLC
    Inventors: Chad Carroll, Thomas Korb, Ryan Morgan, Kevin Anderson, Mark Vaccari
  • Publication number: 20230196189
    Abstract: A system and a method for measuring of parameter values of semiconductor objects within wafers with increased throughput include using a modified machine learning algorithm to extract measurement results from instances of semiconductor objects. A training method for training the modified machine learning algorithm includes reducing a user interaction. The method can be more flexible and robust and can involve less user interaction than conventional methods. The system and method can be used for quantitative metrology of integrated circuits within semiconductor wafers.
    Type: Application
    Filed: March 22, 2022
    Publication date: June 22, 2023
    Inventors: Alexander Freytag, Oliver Malki, Johannes Persch, Thomas Korb, Jens Timo Neumann, Amir Avishai, Alex Buxbaum, Eugen Foca, Dmitry Klochkov
  • Publication number: 20230178327
    Abstract: The present invention relates to a charged particle beam system comprising a deflection subsystem configured to deflect a charged particle beam in a deflection direction based on a sum of analog signals generated by separate digital to analog conversion of a first digital signal and a second digital signal. The present invention further relates to a method of configuring the charged particle beam system so that each of a plurality of regions of interest can be scanned by varying only the first digital signal while the second digital signal is held constant at a value associated with the respective region of interest. The present invention further relates to a method of recording a plurality of images of the regions of interest at the premise of reduced interference due to charge accumulation.
    Type: Application
    Filed: December 6, 2021
    Publication date: June 8, 2023
    Inventors: Eugen Foca, Amir Avishai, Thomas Korb, Daniel Fischer
  • Publication number: 20230169636
    Abstract: Methods and evaluation devices for evaluating 3D data of a device under inspection are provided. A first machine learning logic detects target objects, and a second machine learning logic provides a voxel segmentation for the target objects. Based on the segmented voxels, a transformation to feature space is performed to obtain measurement results.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 1, 2023
    Inventors: Ramani Pichumani, Thomas Korb, Dmitry Klochkov, Jens Timo Neumann
  • Patent number: 11649961
    Abstract: Emissions of NOX and/or CO are reduced at the stack by systems and methods wherein a primary fuel is thoroughly mixed with a specific range of excess combustion air. The primary fuel-air mixture is then discharged and anchored within a combustion chamber of a burner. Further, the systems and methods provide for dynamically controlling NOX content in emissions from a furnace by adjusting the flow of primary fuel and of a secondary stage fuel, and in some cases controlling the amount or placement of combustion air into the furnace.
    Type: Grant
    Filed: September 5, 2018
    Date of Patent: May 16, 2023
    Assignee: John Zink Company, LLC
    Inventors: Chad Carroll, Jaime Erazo, Valeriy Smirnov, Thomas Korb, Mark Vaccari, Sean Battisti, Jose Corcega
  • Publication number: 20230145897
    Abstract: The present invention relates to a method for measuring a sample with a microscope, the method comprising scanning the sample using a focusing plane having a first angle with respect to a top surface of the sample and computing a confidence distance based on the first angle. The method further comprises selecting at least one among a plurality of alignment markers on the sample for performing a lateral alignment of the scanning step and/or for performing a lateral alignment of an output of the scanning step. In particular, the at least one alignment marker selected at the selecting step is chosen among the alignment markers placed within the confidence distance from an intersection of the focusing plane with the top surface.
    Type: Application
    Filed: November 9, 2021
    Publication date: May 11, 2023
    Inventors: Dmitry Klochkov, Chuong Huynh, Thomas Korb, Alex Buxbaum, Amir Avishai
  • Publication number: 20230120847
    Abstract: The present invention relates to a method for measuring a sample with a microscope, the method comprising the steps of: measuring a tilt of the sample, correcting an orientation of the sample based on the tilt, and scanning the sample.
    Type: Application
    Filed: October 14, 2021
    Publication date: April 20, 2023
    Inventors: Eugen Foca, Amir Avishai, Dmitry Klochkov, Thomas Korb, Jens Timo Neumann, Keumsil Lee
  • Publication number: 20230115376
    Abstract: A dual-beam device, such as, a scanning electron microscope combined with a focused-ion beam milling column, is employed for a slice-in-image process. Based on one or more images of at least one cross-section of a test volume of a wafer, a wafer tilt is determined.
    Type: Application
    Filed: October 7, 2021
    Publication date: April 13, 2023
    Inventors: Dmitry Klochkov, Chuong Huynh, Thomas Korb