Patents by Inventor Thomas L. Bertsch

Thomas L. Bertsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140210587
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: March 28, 2014
    Publication date: July 31, 2014
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8730003
    Abstract: A resistor includes a substantially cylindrical resistive element having a resistance of less than about 1 m?, a substantially cylindrical first termination electrically connected to the resistive element and a second termination electrically connected to the resistive element. The substantially cylindrical first termination is hollow to allow for accepting a connection such as from a battery cable. In addition there may be sense leads present on the resistor. A method of forming a substantially cylindrical resistor includes forming a hollow cylindrical resistor body by rolling a flat sheet comprising a resistive element and a first termination and a second termination joined on opposite ends of the resistive element.
    Type: Grant
    Filed: December 28, 2012
    Date of Patent: May 20, 2014
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Joel J. Smejkal, David Lange, Thomas L. Bertsch, Steve Hendricks, Rod Brune
  • Patent number: 8686828
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 1, 2014
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Publication number: 20140002232
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation are disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots is located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals.
    Type: Application
    Filed: August 30, 2013
    Publication date: January 2, 2014
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Clark L. SMITH, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 8525637
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation are disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots is located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals.
    Type: Grant
    Filed: June 11, 2012
    Date of Patent: September 3, 2013
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 8344846
    Abstract: A resistor includes a substantially cylindrical resistive element having a resistance of less than about 1 m?, a substantially cylindrical first termination electrically connected to the resistive element and a second termination electrically connected to the resistive element. The substantially cylindrical first termination is hollow to allow for accepting a connection such as from a battery cable. In addition there may be sense leads present on the resistor. A method of forming a substantially cylindrical resistor includes forming a hollow cylindrical resistor body by rolling a flat sheet comprising a resistive element and a first termination and a second termination joined on opposite ends of the resistive element.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: January 1, 2013
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Joel J. Smejkal, David L. Lange, Thomas L. Bertsch, Steve Hendricks, Rod Brune
  • Patent number: 8325007
    Abstract: A metal strip resistor is provided with a resistive element disposed between a first termination and a second termination. The resistive element, first termination, and second termination form a substantially flat plate. A thermally conductive and electrically non-conductive thermal interface material such as a thermally conductive adhesive is disposed between the resistive element and first and second heat pads that are placed on top of the resistive element and adjacent to the first and second terminations, respectively.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: December 4, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Todd L. Wyatt, Thomas L. Bertsch, Rodney J. Brune
  • Publication number: 20120299694
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8319598
    Abstract: A power resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the power resistor. The power resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 27, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Felix Zandman, Clark L. Smith, Todd L. Wyatt, Thomas L. Veik, Thomas L. Bertsch
  • Publication number: 20120293299
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation are disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots is located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals.
    Type: Application
    Filed: June 11, 2012
    Publication date: November 22, 2012
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 8242878
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 14, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8198977
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation is disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots are located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals. The fine TCR calibration slot has a depth selected to obtain a TCR value observed at the voltage sense terminals that approaches zero. The resistor can also have a resistance calibration slot located between the pair of main terminals. The resistance calibration slot has a depth selected to calibrate a resistance value of the resistor.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: June 12, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Publication number: 20110162197
    Abstract: A resistor includes a substantially cylindrical resistive element having a resistance of less than about 1 m?, a substantially cylindrical first termination electrically connected to the resistive element and a second termination electrically connected to the resistive element. The substantially cylindrical first termination is hollow to allow for accepting a connection such as from a battery cable. In addition there may be sense leads present on the resistor. A method of forming a substantially cylindrical resistor includes forming a hollow cylindrical resistor body by rolling a flat sheet comprising a resistive element and a first termination and a second termination joined on opposite ends of the resistive element.
    Type: Application
    Filed: March 18, 2011
    Publication date: July 7, 2011
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Clark L. Smith, Joel J. Smejkal, David Lange, Thomas L. Bertsch, Steve Hendricks, Rod Brune
  • Publication number: 20110156860
    Abstract: A metal strip resistor is provided with a resistive element disposed between a first termination and a second termination. The resistive element, first termination, and second termination form a substantially flat plate. A thermally conductive and electrically non-conductive thermal interface material such as a thermally conductive adhesive is disposed between the resistive element and first and second heat pads that are placed on top of the resistive element and adjacent to the first and second terminations, respectively.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: CLARK L. SMITH, TODD L. WYATT, THOMAS L. BERTSCH, RODNEY J. BRUNE
  • Patent number: 7911319
    Abstract: A resistor includes a substantially cylindrical resistive element having a resistance of less than about 1 m?, a substantially cylindrical first termination electrically connected to the resistive element and a second termination electrically connected to the resistive element. The substantially cylindrical first termination is hollow to allow for accepting a connection such as from a battery cable. In addition there may be sense leads present on the resistor. A method of forming a substantially cylindrical resistor includes forming a hollow cylindrical resistor body by rolling a flat sheet comprising a resistive element and a first termination and a second termination joined on opposite ends of the resistive element.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: March 22, 2011
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Joel J. Smejkal, David Lange, Thomas L. Bertsch, Steve Hendricks, Rod Brune
  • Publication number: 20110063071
    Abstract: A power resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the power resistor. The power resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: FELIX ZANDMAN, CLARK L. SMITH, TODD L. WYATT, THOMAS L. VEIK, THOMAS L. BERTSCH
  • Publication number: 20110057764
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation is disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots are located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals. The fine TCR calibration slot has a depth selected to obtain a TCR value observed at the voltage sense terminals that approaches zero. The resistor can also have a resistance calibration slot located between the pair of main terminals. The resistance calibration slot has a depth selected to calibrate a resistance value of the resistor.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 10, 2011
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 7843309
    Abstract: A resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the resistor. The resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material. The resistive element may be a metal strip, a foil, or film material.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 30, 2010
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Felix Zandman, Clark L. Smith, Todd L. Wyatt, Thomas L. Veik, Thomas L. Bertsch
  • Publication number: 20100060409
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 11, 2010
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: CLARK L. SMITH, THOMAS L. BERTSCH, TODD L. WYATT, THOMAS L. VEIK, RODNEY BRUNE
  • Publication number: 20090195348
    Abstract: A resistor includes a substantially cylindrical resistive element having a resistance of less than about 1 m?, a substantially cylindrical first termination electrically connected to the resistive element and a second termination electrically connected to the resistive element. The substantially cylindrical first termination is hollow to allow for accepting a connection such as from a battery cable. In addition there may be sense leads present on the resistor. A method of forming a substantially cylindrical resistor includes forming a hollow cylindrical resistor body by rolling a flat sheet comprising a resistive element and a first termination and a second termination joined on opposite ends of the resistive element.
    Type: Application
    Filed: February 6, 2008
    Publication date: August 6, 2009
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: CLARK L. SMITH, JOEL J. SMEJKAL, DAVID LANGE, THOMAS L. BERTSCH, STEVE HENDRICKS, ROD BRUNE