Patents by Inventor Thomas L. Veik

Thomas L. Veik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120299694
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: August 8, 2012
    Publication date: November 29, 2012
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8319598
    Abstract: A power resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the power resistor. The power resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material.
    Type: Grant
    Filed: November 19, 2010
    Date of Patent: November 27, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Felix Zandman, Clark L. Smith, Todd L. Wyatt, Thomas L. Veik, Thomas L. Bertsch
  • Publication number: 20120293299
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation are disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots is located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals.
    Type: Application
    Filed: June 11, 2012
    Publication date: November 22, 2012
    Applicant: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Publication number: 20120281363
    Abstract: A heat spreader for a resistive element is provided, the heat spreader having a body portion that is arranged over a top surface of the resistive element and electrically insulated from the resistive element. The heat spreader also includes one or more leg portion that extends from the body portion and are associated with the heat sink in a thermally conductive relationship.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 8, 2012
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Clark L. Smith, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 8248202
    Abstract: A metal strip resistor includes a resistor body having a resistive element formed from a strip of an electrically resistive metal material and a first termination electrically connected to the resistive element to form a first junction and a second termination electrically connected to the resistive element to form a second junction, the first termination and the second termination formed from strips of electrically conductive metal material. The resistive element, the first termination, and the second termination being arranged mitigate thermally induced voltages between the first junction and the second junction.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: August 21, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Doug Brackhan, Clark L. Smith, Thomas L. Veik
  • Patent number: 8242878
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: August 14, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik, Rodney Brune
  • Patent number: 8198977
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation is disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots are located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals. The fine TCR calibration slot has a depth selected to obtain a TCR value observed at the voltage sense terminals that approaches zero. The resistor can also have a resistance calibration slot located between the pair of main terminals. The resistance calibration slot has a depth selected to calibrate a resistance value of the resistor.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: June 12, 2012
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Publication number: 20110063071
    Abstract: A power resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the power resistor. The power resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material.
    Type: Application
    Filed: November 19, 2010
    Publication date: March 17, 2011
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: FELIX ZANDMAN, CLARK L. SMITH, TODD L. WYATT, THOMAS L. VEIK, THOMAS L. BERTSCH
  • Publication number: 20110057764
    Abstract: A current sense resistor and a method of manufacturing a current sensing resistor with temperature coefficient of resistance (TCR) compensation is disclosed. The resistor has a resistive strip disposed between two conductive strips. A pair of main terminals and a pair of voltage sense terminals are formed in the conductive strips. A pair of rough TCR calibration slots are located between the main terminals and the voltage sense terminals, each of the rough TCR calibration slots have a depth selected to obtain a negative starting TCR value observed at the voltage sense terminals. A fine TCR calibration slot is formed between the pair of voltage sense terminals. The fine TCR calibration slot has a depth selected to obtain a TCR value observed at the voltage sense terminals that approaches zero. The resistor can also have a resistance calibration slot located between the pair of main terminals. The resistance calibration slot has a depth selected to calibrate a resistance value of the resistor.
    Type: Application
    Filed: September 2, 2010
    Publication date: March 10, 2011
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Clark L. Smith, Thomas L. Bertsch, Todd L. Wyatt, Thomas L. Veik
  • Patent number: 7843309
    Abstract: A resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the resistor. The resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material. The resistive element may be a metal strip, a foil, or film material.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: November 30, 2010
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Felix Zandman, Clark L. Smith, Todd L. Wyatt, Thomas L. Veik, Thomas L. Bertsch
  • Publication number: 20100237982
    Abstract: A metal strip resistor includes a resistor body having a resistive element formed from a strip of an electrically resistive metal material and a first termination electrically connected to the resistive element to form a first junction and a second termination electrically connected to the resistive element to form a second junction, the first termination and the second termination formed from strips of electrically conductive metal material. The resistive element, the first termination, and the second termination being arranged mitigate thermally induced voltages between the first junction and the second junction.
    Type: Application
    Filed: August 6, 2009
    Publication date: September 23, 2010
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Doug Brackhan, Clark L. Smith, Thomas L. Veik
  • Publication number: 20100060409
    Abstract: A metal strip resistor is provided. The metal strip resistor includes a metal strip forming a resistive element and providing support for the metal strip resistor without use of a separate substrate. There are first and second opposite terminations overlaying the metal strip. There is plating on each of the first and second opposite terminations. There is also an insulating material overlaying the metal strip between the first and second opposite terminations. A method for forming a metal strip resistor wherein a metal strip provides support for the metal strip resistor without use of a separate substrate is provided. The method includes coating an insulative material to the metal strip, applying a lithographic process to form a conductive pattern overlaying the resistive material wherein the conductive pattern includes first and second opposite terminations, electroplating the conductive pattern, and adjusting resistance of the metal strip.
    Type: Application
    Filed: September 5, 2008
    Publication date: March 11, 2010
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: CLARK L. SMITH, THOMAS L. BERTSCH, TODD L. WYATT, THOMAS L. VEIK, RODNEY BRUNE
  • Publication number: 20090085715
    Abstract: A resistor includes first and second opposite terminations, a resistive element formed from a plurality of resistive element segments between the first and second opposite terminations, at least one segmenting conductive strip separating two of the resistive element segments, and at least one open area between the first and second opposite terminations and separating at least two resistive element segments. Separation of the plurality of resistive element segments assists in spreading heat throughout the resistor. The resistor or other electronic component may be packaged by bonding to a heat sink tab with a thermally conductive and electrically insulative material. The resistive element may be a metal strip, a foil, or film material.
    Type: Application
    Filed: September 27, 2007
    Publication date: April 2, 2009
    Applicant: VISHAY DALE ELECTRONICS, INC.
    Inventors: Felix Zandman, Clark L. Smith, Todd L. Wyatt, Thomas L. Veik, Thomas L. Bertsch
  • Patent number: 7190252
    Abstract: An electrical resistor is provided with a resistive element and terminations extending from opposite ends of the resistive element. The terminations are folded under the resistive element, with a thermally conductive and electrically insulative filler being sandwiched and bonded between the resistive element and the terminations. The terminations provide for mounting of the resistor to an electronic circuit assembly. The intimate bond between the resistive element, filler and terminations allow for enhanced dissipation of heat generated in the use of the resistive element, so as to produce a resistor which operates at a lower temperature, and improves component reliability.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: March 13, 2007
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Veik, Todd L. Wyatt, Thomas L. Bertsch, Rodney Brune, William Mac Arthur
  • Patent number: 6587025
    Abstract: A side-by-side coil inductor includes a first coil comprising a plurality of conductive first coil segments positioned one above another and connected in series. A second coil includes a plurality of conductive second coil segments positioned above one another and connected together in series. The first and second coil are in side-by-side position relative to one another and are connected together in series. Each of the first and second coil are approximately circular or square in configuration and the total configuration of the two coils is rectangular.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: July 1, 2003
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Clark L. Smith, Thomas L. Veik
  • Publication number: 20020101318
    Abstract: A side-by-side coil inductor includes a first coil comprising a plurality of conductive first coil segments positioned one above another and connected in series. A second coil includes a plurality of conductive second coil segments positioned above one another and connected together in series. The first and second coil are in side-by-side position relative to one another and are connected together in series. Each of the first and second coil are approximately circular or square in configuration and the total configuration of the two coils is rectangular.
    Type: Application
    Filed: January 31, 2001
    Publication date: August 1, 2002
    Inventors: Clark L. Smith, Thomas L. Veik
  • Patent number: 6391526
    Abstract: A thick film low value high frequency inductor made by the process of subjecting a conductor layer to a plurality of linear cuts by a pulsing laser cutter imposed simultaneously on the entire length of the linear cut being made to create a cross sectional cut of substantial rectangular configuration. The conductor body is a layer of dried silver thick film ink. The method of making a thick film low value high frequency inductor involves the steps of taking a conductor layer comprised of a dried layer of photo sensitive silver ink, masking the ink with the negative of the desired configuration of the ink, exposing the ink to UV radiation, developing the ink, and firing the layer to adhere the silver to the layer.
    Type: Grant
    Filed: November 27, 2000
    Date of Patent: May 21, 2002
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Herman R. Person, Thomas L. Veik, Jeffrey T. Adelman
  • Patent number: 6366192
    Abstract: A thick film low value high frequency inductor made by the process of subjecting a conductor layer to a plurality of linear cuts by a pulsing laser cutter imposed simultaneously on the entire length of the linear cut being made to create a cross sectional cut of substantial rectangular configuration. The conductor body is a layer of dried silver thick film ink. The method of making a thick film low value high frequency inductor involves the steps of taking a conductor layer comprised of a dried layer of photo sensitive silver ink, masking the ink with the negative of the desired configuration of the ink, exposing the ink to UV radiation, developing the ink, and firing the layer to adhere the silver to the layer.
    Type: Grant
    Filed: April 12, 2001
    Date of Patent: April 2, 2002
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Herman R. Person, Thomas L. Veik, Jeffrey T. Adelman
  • Patent number: 6294756
    Abstract: A thick film low value high frequency inductor made by the process of subjecting a conductor layer to a plurality of linear cuts by a pulsing laser cutter imposed simultaneously on the entire length of the linear cut being made to create a cross sectional cut of substantial rectangular configuration. The conductor body is a layer of dried silver thick film ink. The method of making a thick film low value high frequency inductor involves the steps of taking a conductor layer comprised of a dried layer of photo sensitive silver ink, masking the ink with the negative of the desired configuration of the ink, exposing the ink to UV radiation, developing the ink, and firing the layer to adhere the silver to the layer.
    Type: Grant
    Filed: October 27, 1999
    Date of Patent: September 25, 2001
    Assignee: Vishay Dale Electronics, Inc.
    Inventors: Herman R. Person, Thomas L. Veik, Jeffrey T. Adelman
  • Publication number: 20010019298
    Abstract: A thick film low value high frequency inductor made by the process of subjecting a conductor layer to a plurality of linear cuts by a pulsing laser cutter imposed simultaneously on the entire length of the linear cut being made to create a cross sectional cut of substantial rectangular configuration. The conductor body is a layer of dried silver thick film ink. The method of making a thick film low value high frequency inductor involves the steps of taking a conductor layer comprised of a dried layer of photo sensitive silver ink, masking the ink with the negative of the desired configuration of the ink, exposing the ink to UV radiation, developing the ink, and firing the layer to adhere the silver to the layer.
    Type: Application
    Filed: April 12, 2001
    Publication date: September 6, 2001
    Inventors: Herman R. Person, Thomas L. Veik, Jeffrey T. Adelman