Patents by Inventor Thomas Leroy

Thomas Leroy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10732300
    Abstract: The present application relates generally to positron emission tomography (PET). It finds particular application in conjunction with energy calibration of a digital PET (DPET) detector and will be described with particular reference thereto. In one aspect, a difference spectrum is produced by finding a difference between a background radiation spectrum with no radioactive source loaded and a calibration source radiation spectrum with a radioactive source loaded. The difference spectrum may then be used to identify an energy peak.
    Type: Grant
    Filed: October 12, 2016
    Date of Patent: August 4, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Leroy Laurence, Sharon Xiaorong Wang
  • Patent number: 10698125
    Abstract: Time of flight (TOF) corrections for radiation detector elements of a TOF positron emission tomography (TOF PET) scanner are generated by solving an over-determined set of equations defined by calibration data acquired by the TOF PET scanner from a point source located at an isocenter of the TOF PET scanner, suitably represented as matrix equation Formula I=CS where Formula I represents TOF time differences, C is a relational matrix encoding the radiation detector elements, and S represents the TOF corrections. A pseudo-inverse C?1 of relational matrix C may be computed to solve S=C?1 Formula I. TOF corrections can be generated for a particular type of detector unit by identifying the radiation detector elements in C by detector unit. Further, multi-photon triggering time stamps can be adjusted to first-photon triggering based on Formula II where P1 is average photon count using first-photon triggering and Pm is a photon count using multi-photon triggering.
    Type: Grant
    Filed: September 17, 2015
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sharon Xiaorong Wang, Thomas Leroy Laurence
  • Patent number: 10520613
    Abstract: A medical nuclear imaging system (10) and method (100) generate smooth energy histograms. Radiation events are detected by a plurality of detectors (14), the radiation events localized to a plurality of pixels of the detectors (14). The energy levels of the detected radiation events are estimated and the estimated energy levels are scaled with scaling parameters that scale the energy centroids of the plurality of pixels to target values differing by offsets around a common target value, the target values differing with spatial location of the plurality of pixels. Target value offsets are removed from the scaled energy levels and the detected radiation events are combined into an energy histogram using the energy levels with the target value offsets removed.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: December 31, 2019
    Assignee: KONINKLUKE PHILIPS N.V.
    Inventors: Jerome John Griesmer, Thomas Leroy Laurence
  • Patent number: 10379228
    Abstract: A photon detector includes a sensor array of optical sensors disposed in a plane and four substantially identical scintillation crystal bars. Each optical sensor is configured to sense luminescence. Each of the four scintillator crystal bars being a rectangular prism with four side surfaces and first and second end surfaces, each scintillation bar has two side surfaces which each face a side surface of another scintillation bar, and each scintillation crystal bar generating a light scintillation in response to interacting with a received gamma photon. A first layer (80) is disposed in a first plane disposed between and adjacent facing side surfaces of the four substantially identical scintillation crystal bars with a light sharing portion (82) adjacent the first end surface and a reflective portion (84) adjacent the second end surface.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: August 13, 2019
    Assignees: KONINKLIJKE PHILIPS N.V., UNIVERSITY OF WASHINGTON
    Inventors: David Sowards-Emmerd, Adrienne Lehnert, William Hunter, Robert Miyaoka, Lingxiong Shao, Thomas Leroy Laurence
  • Patent number: 10371836
    Abstract: A system (10) and method for energy correction of positron emission tomography (PET) event data by at least one processor. Event data for a plurality of strike events corresponding to gamma events is received. Each strike event is detected by a pixel of a detector module (50) and includes an energy and a time. The energy of the strike events is linearized using an energy linearity correction model including one or more parameters. Clusters of the strike events are identified based on the times of the strike events, and sub-clusters of the clusters are identified based on the pixels corresponding to the strike events of the clusters. Energies of the sub-clusters are corrected using a first set of correction factors, and energies of clusters including a plurality of sub-clusters are corrected using a second set of correction factors.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: August 6, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Sharon Xiaorong Wang, Thomas Leroy Laurence
  • Publication number: 20190219471
    Abstract: The present invention relates to a method of controlling a positive-ignition internal combustion engine, in which the ignition advance is controlled (CON) by means of an estimation (EST) of the distribution of the knock measurements (MEAS). This estimation (EST) makes it possible to determine, for these measurements (MEAS), a confidence interval (qmin, qmax) of a predetermined quantile of the distribution of the knock measurements (MEAS).
    Type: Application
    Filed: December 6, 2018
    Publication date: July 18, 2019
    Inventors: Maxime JEAN, Thomas LEROY, Fabien VIDAL-NAQUET
  • Publication number: 20190170380
    Abstract: An HVAC system includes an indoor unit, an outdoor unit, a thermostat, and a remote control device. The indoor unit comprises a first variable speed drive (VSD) to control a speed of HVAC rotary components within the indoor unit, and the outdoor unit comprises a second VSD to control a speed of HVAC rotary components within the outdoor unit. The thermostat in communication with the indoor unit and the outdoor unit comprises a communication interface, and a system controller in communication with the communication interface. The remote control device transmits a signal to the system controller to alter the speed of the HVAC rotary components, where the HVAC rotary components operate at a high speed mode which is above the preset speed limit of the respective HVAC rotary component to achieve an enhanced cooling mode.
    Type: Application
    Filed: February 7, 2019
    Publication date: June 6, 2019
    Applicant: Trane International Inc.
    Inventors: Jason Thomas LeRoy, Kirby N. Bicknell, Christopher Blake Smith, John Hughes, Gregory S. Brown
  • Publication number: 20190143145
    Abstract: Disclosed herein are systems and methods for real-time monitoring of patient position and/or location during a radiation treatment session. Images acquired of a patient during a treatment session can be used to calculate the patient's position and/or location with respect to the components of the radiation therapy system. One variation of a radiation therapy system includes a circular gantry with a rotatable ring coupled to a stationary frame, a therapeutic radiation source mounted on the rotatable ring, and a patient-monitoring imaging system mounted on the rotatable ring. The patient-monitoring system may have one or more image sensors or cameras disposed on the rotatable ring within a bore region of the radiation therapy system, and may be configured to acquire image data as the ring rotates.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 16, 2019
    Inventors: Thomas Leroy LAURENCE, JR., Jayakrishnan JANARDHANAN
  • Patent number: 10279305
    Abstract: A method for controlling gas separation of a gas mixture comprising a first component and a second component, the method comprising contacting a feed containing the gas mixture with an adsorbent in a bed in a column in a dual reflux swing adsorption process such that a first component of a gas mixture attains or exceeds a desired purity and a second component of the gas mixture attains or exceeds a desired purity, wherein the mathematical product of the cycle feed time and the sum of the molar feed flow rate and the molar reflux flow rate directed to the column does not exceed the maximum number of moles that can be treated per bed per cycle and wherein the ratio of the first product flow rate to the feed flow rate is less than or equal to the first component's fraction of the feed, and the ratio of the second product flow rate to the feed flow rate is less than or equal to the second component's fraction of the feed.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: May 7, 2019
    Assignees: The University of Western Australia, Chevron U.S.A. Inc.
    Inventors: Eric Freemantle May, Gang Li, Kaman Ida Chan, Stanley Hsing-Wei Huang, Thomas Leroy Hinton Saleman
  • Patent number: 10203127
    Abstract: An HVAC system includes an indoor unit, an outdoor unit, a thermostat, and a remote control device. The indoor unit comprises a first variable speed drive (VSD) to control a speed of HVAC rotary components within the indoor unit, and the outdoor unit comprises a second VSD to control a speed of HVAC rotary components within the outdoor unit. The thermostat in communication with the indoor unit and the outdoor unit comprises a communication interface, and a system controller in communication with the communication interface. The remote control device transmits a signal to the system controller to alter the speed of the HVAC rotary components, where the HVAC rotary components operate at a high speed mode which is above the preset speed limit of the respective HVAC rotary component to achieve an enhanced cooling mode.
    Type: Grant
    Filed: April 27, 2017
    Date of Patent: February 12, 2019
    Assignee: Trane International Inc.
    Inventors: Jason Thomas LeRoy, Kirby N. Bicknell, Christopher Blake Smith, John Hughes, Gregory S. Brown
  • Publication number: 20180341027
    Abstract: The present application relates generally to positron emission tomography (PET). It finds particular application in conjunction with energy calibration of a digital PET (DPET) detector and will be described with particular reference thereto. In one aspect, a difference spectrum is produced by finding a difference between a background radiation spectrum with no radioactive source loaded and a calibration source radiation spectrum with a radioactive source loaded. The difference spectrum may then be used to identify an energy peak.
    Type: Application
    Filed: October 12, 2016
    Publication date: November 29, 2018
    Inventors: Thomas Leroy LAURENCE, Sharon Xiaorong WANG
  • Patent number: 10101475
    Abstract: A system (10) and a method (100) compensate for one or more dead pixels in positron emission tomography (PET) imaging. A pixel compensation processor receives PET data describing a target volume of a subject. The PET data is missing data for one or more dead pixels. The pixel compensation estimates PET data for the dead pixels from the received PET data.
    Type: Grant
    Filed: March 17, 2015
    Date of Patent: October 16, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Leroy Laurence, Sharon Xiaorong Wang
  • Patent number: 10101474
    Abstract: A positron emission tomography (PET) apparatus and method employs a plurality of radiation detectors (20) disposed around an imaging region (16) and configured to detect 511 keV radiation events emanating from the imaging region. A calibration phantom is disposed in the imaging region. One or more processors are configured to: acquire and store listmode data of the phantom; measure a random rate for each line of response (LOR) from the listmode data using a coincident 511 keV events detector (34) with a time offset (54); determine a singles rate for each detector pixel from the random event rate, for example via a histogram plotting singles rate for each detector pixel; compute a live time factor of each LOR; compute a dead time correction factor as the reciprocal of the live time factor; and correct images according to the dead time correction factor.
    Type: Grant
    Filed: December 14, 2015
    Date of Patent: October 16, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Thomas Leroy Laurence, Sharon Xiarong Wang
  • Patent number: 10054038
    Abstract: The invention relates to a combustion engine equipped with a dual supercharging system in which a mechanical compressor is driven by an electric motor. The method controls a combustion engine with the electric motor being controlled by determining a rotational speed setpoint for positive-displacement compressor using a supercharge volume filling model.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: August 21, 2018
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Thomas Leroy, Alexandre Chasse, Jonathan Chauvin
  • Patent number: 10004472
    Abstract: A diagnostic imaging system includes a plurality of radiation detectors (20) configured to detect radiation events emanating from an imaging region. The system includes a calibration phantom (14) configured to be disposed in the imaging region spanning substantially an entire field of view and to generate radiation event pairs that define lines-of-response, wherein the calibration phantom is thin such that each LOR intersects the calibration phantom along its length, the thickness of the phantom being smaller than the length of the LORs. A calibration processor (24) receives input of the radiation detectors and calculates an incidence angle independent crystal delay Ti for each detector. The calibration processor (24) constructs a first look-up table for the timing correction of each LOR and a second look-up table for the angle depth of interaction correction for each crystal by combining Ti and ?i.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: June 26, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Jinghan Ye, Xiyun Song, Thomas Leroy Laurence, Sharon Xiaorong Wang
  • Publication number: 20180142909
    Abstract: Systems and methods are disclosed that include providing a heating, ventilation, and/or air conditioning (HVAC) system with a system controller and an indoor air handling unit comprising an auxiliary heat source, whereby the system controller is configured to employ a hysteresis control algorithm to operate the HVAC system in a cooling mode while simultaneously operating the auxiliary heat source to provide a dehumidified, temperature-conditioned airflow to a zone conditioned by the HVAC system.
    Type: Application
    Filed: November 17, 2017
    Publication date: May 24, 2018
    Inventors: Wayne Kraft, Jason Thomas LeRoy, Roy Crawford
  • Publication number: 20180133508
    Abstract: Described here are systems, devices, and methods for imaging and radiotherapy procedures. Generally, a radiotherapy system may include a radiotransparent patient platform, a radiation source coupled to a multi-leaf collimator, and a detector facing the collimator. The radiation source may be configured to emit a first beam through the collimator to provide treatment to a patient on the patient platform. A controller may be configured to control the radiotherapy system.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 17, 2018
    Inventors: William PEARCE, Brent HARPER, Peter OLCOTT, Manat MAOLINBAY, Rostem BASSALOW, George ZDASIUK, Thomas Leroy LAURENCE, JR.
  • Publication number: 20180104640
    Abstract: A method for controlling gas separation of a gas mixture comprising a first component and a second component, the method comprising contacting a feed containing the gas mixture with an adsorbent in a bed in a column in a dual reflux swing adsorption process such that a first component of a gas mixture attains or exceeds a desired purity and a second component of the gas mixture attains or exceeds a desired purity, wherein the mathematical product of the cycle feed time and the sum of the molar feed flow rate and the molar reflux flow rate directed to the column does not exceed the maximum number of moles that can be treated per bed per cycle and wherein the ratio of the first product flow rate to the feed flow rate is less than or equal to the first component's fraction of the feed, and the ratio of the second product flow rate to the feed flow rate is less than or equal to the second component's fraction of the feed.
    Type: Application
    Filed: April 15, 2016
    Publication date: April 19, 2018
    Inventors: Eric Freemantle MAY, Gang LI, Kaman Ida CHAN, Stanley Hsing-Wei HUANG, Thomas Leroy Hinton SALEMAN
  • Patent number: 9939068
    Abstract: Fluid control apparatus having flow restrictors are described herein. An example actuator includes an actuator housing having an actuator to define a first chamber of the actuator housing and a second chamber of the actuator housing. A loading fluid pathway is formed in the actuator housing to fluidly couple a loading fluid and the first chamber. A restrictor is positioned within the loading fluid pathway to regulate a flow rate of the loading fluid that is to flow from an inlet port of the loading fluid pathway to the first chamber.
    Type: Grant
    Filed: July 6, 2015
    Date of Patent: April 10, 2018
    Assignee: Emerson Process Management Regulator Technologies, Inc.
    Inventors: Thomas LeRoy Weyer, Jr., Madhusudhan Reddy Kotragouda Basappa
  • Patent number: 9879592
    Abstract: The invention relates to a method for controlling a combustion engine (1) equipped with a supercharging system, comprising a turbocharger (2) and a mechanical compressor (3) and a bypass circuit disposed in parallel with the mechanical compressor comprising a controlled bypass valve (4). The method includes: a) acquiring a boost pressure setpoint Psuralsp; b) converting the boost pressure setpoint Psuralsp into an opening setpoint Bypasssp of the bypass valve (4) using a filling model modelling the filling of the supercharging boost volume between the intake valves of the engine (1) and the mechanical compressor (3) and bypass valve (4); and c) controlling the bypass valve (4) is according to the opening setpoint Bypasssp of the bypass valve.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: January 30, 2018
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Thomas Leroy, Jonathan Chauvin, Alexandre Chasse