Patents by Inventor Thomas Merzhaeuser

Thomas Merzhaeuser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220048258
    Abstract: A method for producing a hollow composite structure, such as a spar beam for a wind turbine blade, includes placing a membrane within a mold tool, the membrane being permeable to air and impermeable to resin. A mandrel is placed within the mold tool, the mandrel enclosed in an air tight layer that includes a vent. Fiber reinforcement material is placed around the mandrel within the mold tool and the membrane is sealed at least partly around the fiber reinforcement material and mandrel. The mold tool is closed with the vent line from the mandrel extending through the sealed membrane to outside of the mold tool. A vacuum is drawn in the mold tool while the mandrel is vented to outside of the mold tool, and while the vacuum is being drawn, resin is infused into the mold tool around the mandrel such that the resin is drawn towards the membrane.
    Type: Application
    Filed: December 11, 2018
    Publication date: February 17, 2022
    Inventors: Xu Chen, Amir Riahi, Thomas Merzhaeuser, Julie Ann Shepherd, Louis Rondeau, Scott Iverson Shillig
  • Patent number: 11225942
    Abstract: A wind turbine composite laminate component and method for producing it is disclosed as initially assembling a laminated structure having at least two reinforced layers and a plurality of interleaf layers positioned adjacent to one of the at least two reinforced layers. Then placing the laminated structure into a mold where resin is sequentially and independently transferred into each of the plurality of interleaf layers. Then curing the transferred resin in the laminated structure to form a composite laminate component having the at least two reinforced layers, the plurality of interleaf layers, and cured resin.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: January 18, 2022
    Assignee: General Electric Company
    Inventors: Amir Riahi, Swapnil Dhumal, Xu Chen, Thomas Merzhaeuser
  • Publication number: 20220010766
    Abstract: A rotor blade for a wind turbine includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments includes at least one shell member defining an airfoil surface and an internal support structure. The first blade segment includes a beam structure extending lengthwise that structurally connects with the second blade segment. Further, the beam structure forms a portion of the internal support structure of the first blade segment. Moreover, the beam structure is formed, at least in part, of a first portion constructed of a first composite material and a second portion constructed of a different, second composite material. Further, the first and second portions are connected together via a scarf joint. In addition, the scarf joint includes a different, third composite material arranged between the first and second composite materials.
    Type: Application
    Filed: November 1, 2018
    Publication date: January 13, 2022
    Inventor: Thomas Merzhaeuser
  • Publication number: 20210396207
    Abstract: A rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of the first and second blade segments has at least one shell member defining an airfoil surface. The first blade segment includes a beam structure having a receiving end with at least one span-wise extending pin extending therefrom. The second blade segment includes a receiving section that receives the beam structure. The receiving section includes a chord-wise member having a pin joint slot defined therethrough. The pin joint slot receives the span-wise extending pin at the receiving end of the beam structure so as to secure the first and second blade segments together. Moreover, the chord-wise member, the pin joint slot, and/or the span-wise extending pin includes at least one compliant structure formed of a compliant material that allows a deformation thereof to follow a shear deformation of the rotor blade.
    Type: Application
    Filed: November 1, 2018
    Publication date: December 23, 2021
    Inventors: Thomas Merzhaeuser, Andrew Mitchell Rodwell, Mohammad Salah Attia, Matthew Brian Dudon
  • Publication number: 20210372366
    Abstract: A jointed rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. Each of blade segments has at least one shell member defining an airfoil surface and an internal support structure. The internal support structure of the first blade segment includes a beam structure extending lengthwise that structurally connects with the internal support structure of the second blade segment via a receiving section. The rotor blade further includes one or more pin joints positioned on at least one of internal support structures of the first blade segment or the second blade segment. Thus, at least one of internal support structures of the first blade segment or the second blade segment includes varying material combinations along a span of the rotor blade at locations of the one or more pin joints so as to reinforce the one or more pin joints.
    Type: Application
    Filed: October 30, 2019
    Publication date: December 2, 2021
    Inventors: Thomas Merzhaeuser, Aaron A. Yarbrough, Andrew Mitchell Rodwell, Rishikesh Kumar
  • Patent number: 11162476
    Abstract: A method for manufacturing a wind turbine blade that is pre-staged for subsequent retrofitting with a replacement blade tip segment includes providing the wind turbine blade with a continuous spar structure from a root end to a tip end of the wind turbine blade. At a pre-defined span-wise location, one of a span-wise extending beam structure or span-wise extending receiver section is configured with the spar structure.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: November 2, 2021
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Dominic Alexander Von Terzi
  • Patent number: 11149709
    Abstract: A method to reduce noise and vibration between separate blade segments of a jointed wind turbine rotor blade includes determining an actual offset at a chord-wise joint line between the shell members of the first and second blade segments at a load condition on the jointed wind turbine rotor blade, wherein the offset is any one or combination of a flap-wise offset, a twist-wise offset, or a yawl-wise offset. The method defines a modified configuration of the joint structure at a no-load condition on the wind turbine rotor blade that compensates at least partially for the actual offset at the load condition, and the first and second blade segments are connected with the modified configuration of the joint structure.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: October 19, 2021
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andreas Herrig
  • Patent number: 11022094
    Abstract: The present disclosure is directed to a method of assembly of a rotor blade for a wind turbine. The method includes placing a first rotor blade section onto a first set location of an assembly fixture, wherein the first rotor blade includes a first locating datum such that the assembly fixture at the first set location constrains movement of the first rotor blade section at the first locating datum along a first direction; placing the first rotor blade section onto a second set location of the assembly fixture, wherein the first rotor blade includes a second locating datum such that the assembly fixture at the second set location constrains movement of the first rotor blade section at the second locating datum along a second direction; and positioning a second rotor blade section onto the first rotor blade section within the assembly fixture.
    Type: Grant
    Filed: May 24, 2017
    Date of Patent: June 1, 2021
    Assignee: General Electric Company
    Inventors: Danilo Veljkovic, Brian Scott Redmon, Roland Joseph Menassa, Thomas Merzhaeuser, Daniel Alan Hynum, Alan M. Walker, Shridhar Champaknath Nath
  • Patent number: 10913216
    Abstract: A method for manufacturing a rotor blade panel of a wind turbine includes placing a mold of the rotor blade panel relative to a computer numeric control (CNC) device. The method also includes forming one or more fiber-reinforced outer skins in the mold. The method also includes printing and depositing, via the CNC device, printing and depositing, via the CNC device, a plurality of rib members that intersect to form at least one three-dimensional (3-D) reinforcement grid structure onto an inner surface of the one or more fiber-reinforced outer skins before the one or more fiber-reinforced outer skins have cooled from forming. Further, the grid structure bonds to the fiber-reinforced outer skin(s) as the structure is deposited. In addition, the plurality of rib members include, at least, a first rib member extending in a first direction and a second rib member extending in a different, second direction. Moreover, the first rib member has a varying height along a length thereof.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: February 9, 2021
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Thomas Merzhaeuser, Todd Anderson
  • Patent number: 10900469
    Abstract: A method for retrofitting a wind turbine blade with a replacement blade tip segment includes producing a replacement blade tip segment with an internal beam receiver section, and producing a beam structure. The existing blade tip segment is cut away from the wind turbine blade, wherein the cut defines a chord-wise joint line at the remaining blade root segment of the wind turbine blade. The beam structure is fixed into spar structure of the blade root segment. The replacement blade tip segment is aligned and connected with the blade root segment in a span-wise direction so that the beam structure moves into the beam receiver section. A finish surface can be provided to the blade shell components of the blade root segment and the replacement tip segment at the joint line.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: January 26, 2021
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Rune Vestergaard, Bart Jan Veldkamp
  • Patent number: 10895244
    Abstract: A rotor blade component for a wind turbine includes a first structural component, such as a spar cap, formed from a plurality of stacked pultruded members. A second structural component, such as a shear web, is fixed to the first structural component at a joint interface. One or more webs form the joint interface, wherein each of the webs has a first section bonded between at least two of the pultruded members in the first structural component and a second section extending across the joint interface and bonded onto or into the second structural component.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: January 19, 2021
    Assignee: General Electric Company
    Inventors: Andrew Mitchell Rodwell, Thomas Merzhaeuser, Scott Jacob Huth
  • Patent number: 10865769
    Abstract: A method for manufacturing a rotor blade panel of a wind turbine includes placing one or more fiber-reinforced outer skins into a mold of the rotor blade panel. The method also includes printing and depositing, via a computer numeric control (CNC) device, a plurality of rib members that form at least one three-dimensional (3-D) reinforcement grid structure onto an inner surface of the one or more fiber-reinforced outer skins. Further, the grid structure bonds to the one or more fiber-reinforced outer skins as the grid structure is deposited. Moreover, the method includes printing at least one additional feature into the grid structure.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: December 15, 2020
    Assignee: General Electric Company
    Inventors: James Robert Tobin, Norman Arnold Turnquist, Stephen Bertram Johnson, Don Conrad Johnson, Thomas Merzhaeuser, Peggy Lynn Baehmann, Stefan Herr, Murray Fisher, Andrew McCalip, Alan M. Walker, Todd Anderson
  • Patent number: 10830207
    Abstract: A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. A beam structure extends span-wise from the first blade segment into a receiving section formed in the second blade segment. The receiving section includes opposite spar caps and opposite interconnecting webs. The spar caps have a constant thickness along the receiving section where the spar caps overlap with the beam structure and are formed of a material or combination of materials along the receiving section to produce a desired stiffness of the spar caps along the receiving section. The webs have a reduced amount of conductive material adjacent to a chord-wise joint between the blade segments.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: November 10, 2020
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Mathilde Aubrion, Rishikesh Kumar, Soeren Steffensen
  • Patent number: 10794359
    Abstract: A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line. Each of the blade segments includes a pressure side shell member and a suction side shell member. A sealing tape is applied over the shell members so as to bridge across the chord-wise joint line. The sealing tape includes side edges that are aligned parallel with airflow over the shell members at the chord-wise joint line at a defined load and operational condition on the jointed wind turbine blade.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: October 6, 2020
    Assignee: General Electric Company
    Inventors: Thomas Merzhaeuser, Andreas Herrig
  • Publication number: 20200132053
    Abstract: A method for retrofitting a wind turbine blade with a replacement blade tip segment includes producing a replacement blade tip segment with an internal beam receiver section, and producing a beam structure. The existing blade tip segment is cut away from the wind turbine blade, wherein the cut defines a chord-wise joint line at the remaining blade root segment of the wind turbine blade. The beam structure is fixed into spar structure of the blade root segment. The replacement blade tip segment is aligned and connected with the blade root segment in a span-wise direction so that the beam structure moves into the beam receiver section. A finish surface can be provided to the blade shell components of the blade root segment and the replacement tip segment at the joint line.
    Type: Application
    Filed: October 30, 2018
    Publication date: April 30, 2020
    Inventors: Thomas Merzhaeuser, Rune Vestergaard, Bart Jan Veldkamp
  • Publication number: 20200132054
    Abstract: A method for manufacturing a wind turbine blade that is pre-staged for subsequent retrofitting with a replacement blade tip segment includes providing the wind turbine blade with a continuous spar structure from a root end to a tip end of the wind turbine blade. At a pre-defined span-wise location, one of a span-wise extending beam structure or span-wise extending receiver section is configured with the spar structure.
    Type: Application
    Filed: October 30, 2018
    Publication date: April 30, 2020
    Inventors: Thomas Merzhaeuser, Dominic Alexander Von Terzi
  • Publication number: 20200095977
    Abstract: A method to reduce noise and vibration between separate blade segments of a jointed wind turbine rotor blade includes determining an actual offset at a chord-wise joint line between the shell members of the first and second blade segments at a load condition on the jointed wind turbine rotor blade, wherein the offset is any one or combination of a flap-wise offset, a twist-wise offset, or a yawl-wise offset. The method defines a modified configuration of the joint structure at a no-load condition on the wind turbine rotor blade that compensates at least partially for the actual offset at the load condition, and the first and second blade segments are connected with the modified configuration of the joint structure.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 26, 2020
    Inventors: Thomas Merzhaeuser, Andreas Herrig
  • Publication number: 20200095976
    Abstract: A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint line. Each of the blade segments includes a pressure side shell member and a suction side shell member. A sealing tape is applied over the shell members so as to bridge across the chord-wise joint line. The sealing tape includes side edges that are aligned parallel with airflow over the shell members at the chord-wise joint line at a defined load and operational condition on the jointed wind turbine blade.
    Type: Application
    Filed: September 24, 2018
    Publication date: March 26, 2020
    Inventors: Thomas Merzhaeuser, Andreas Herrig
  • Publication number: 20200095978
    Abstract: A rotor blade component for a wind turbine includes a first structural component, such as a spar cap, formed from a plurality of stacked pultruded members. A second structural component, such as a shear web, is fixed to the first structural component at a joint interface. One or more webs form the joint interface, wherein each of the webs has a first section bonded between at least two of the pultruded members in the first structural component and a second section extending across the joint interface and bonded onto or into the second structural component.
    Type: Application
    Filed: September 25, 2018
    Publication date: March 26, 2020
    Inventors: Andrew Mitchell Rodwell, Thomas Merzhaeuser, Scott Jacob Huth
  • Publication number: 20200072189
    Abstract: A jointed wind turbine rotor blade includes a first blade segment and a second blade segment extending in opposite directions from a chord-wise joint. A beam structure extends span-wise from the first blade segment into a receiving section formed in the second blade segment. The receiving section includes opposite spar caps and opposite interconnecting webs. The spar caps have a constant thickness along the receiving section where the spar caps overlap with the beam structure and are formed of a material or combination of materials along the receiving section to produce a desired stiffness of the spar caps along the receiving section. The webs have a reduced amount of conductive material adjacent to a chord-wise joint between the blade segments.
    Type: Application
    Filed: August 28, 2018
    Publication date: March 5, 2020
    Inventors: Thomas Merzhaeuser, Mathilde Aubrion, Rishikesh Kumar, Soeren Steffensen