Patents by Inventor Thomas Michael Moors

Thomas Michael Moors has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10113532
    Abstract: The present disclosure is directed to pre-cured composites for use in manufacturing rotor blade components of a wind turbine. In one embodiment, the pre-cured composites are pultruded composites having a continuous base portion with a plurality of integral protrusions extending from the continuous base portion, and a fabric layer cured with the continuous base portion. Further, adjacent protrusions are separated by a gap.
    Type: Grant
    Filed: October 23, 2015
    Date of Patent: October 30, 2018
    Assignee: General Electric Company
    Inventors: Amir Riahi, Thomas Michael Moors, Eric Michael Shain, Shannon B. Geiger, Christopher Daniel Caruso, Aaron A. Yarbrough
  • Patent number: 9987677
    Abstract: A method of forming a component having an internal passage defined therein includes positioning a jacketed core with respect to a mold. The jacketed core includes a hollow structure formed from a first material, an inner core disposed within the hollow structure, and a core channel that extends from at least a first end of the inner core through at least a portion of inner core. The method also includes introducing a component material in a molten state into a cavity of the mold, such that the component material in the molten state at least partially absorbs the first material from the jacketed core within the cavity. The method further includes cooling the component material in the cavity to form the component. The inner core defines the internal passage within the component.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: June 5, 2018
    Assignee: General Electric Company
    Inventors: Michael Douglas Arnett, Thomas Michael Moors, Arthur Samuel Peck
  • Publication number: 20170173674
    Abstract: A mold assembly for use in forming a component having an internal passage defined therein includes a mold defining a mold cavity therein, and a deoxygenated core positioned with respect to the mold. The deoxygenated core includes an inner wall that at least partially defines a sealed core chamber within the deoxygenated core. The sealed core chamber has a substantially reduced oxygen content, and a portion of the deoxygenated core is positioned within the mold cavity such that the inner wall of the portion of the deoxygenated core defines the internal passage when the component is formed in the mold assembly.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Michael Douglas Arnett, Joseph Leonard Moroso, Thomas Michael Moors
  • Publication number: 20170173675
    Abstract: A method of forming a component having an internal passage defined therein includes positioning a jacketed core with respect to a mold. The jacketed core includes a hollow structure formed from a first material, an inner core disposed within the hollow structure, and a core channel that extends from at least a first end of the inner core through at least a portion of inner core. The method also includes introducing a component material in a molten state into a cavity of the mold, such that the component material in the molten state at least partially absorbs the first material from the jacketed core within the cavity. The method further includes cooling the component material in the cavity to form the component. The inner core defines the internal passage within the component.
    Type: Application
    Filed: December 17, 2015
    Publication date: June 22, 2017
    Inventors: Michael Douglas Arnett, Thomas Michael Moors, Arthur Samuel Peck
  • Publication number: 20170114773
    Abstract: The present disclosure is directed to pre-cured composites for use in manufacturing rotor blade components of a wind turbine. In one embodiment, the pre-cured composites are pultruded composites having a continuous base portion with a plurality of integral protrusions extending from the continuous base portion, and a fabric layer cured with the continuous base portion. Further, adjacent protrusions are separated by a gap.
    Type: Application
    Filed: October 23, 2015
    Publication date: April 27, 2017
    Inventors: Amir Riahi, Thomas Michael Moors, Eric Michael Shain, Shannon B. Geiger, Christopher Daniel Caruso, Aaron A. Yarbrough
  • Patent number: 9527273
    Abstract: Various embodiments include an infusion bolt and methods of manufacturing such a bolt. In one embodiment an infusion bolt includes: a head having an axially accessible opening extending therethrough; and a shaft extending from the head, the shaft having: an inner cavity fluidly connected with the axially accessible opening of the head; a radially outer surface surrounding the inner cavity; and a set of axially extending apertures along the radially outer surface, the set of axially extending apertures fluidly connected with the inner cavity and the axially accessible opening in the head.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: December 27, 2016
    Assignee: General Electric Company
    Inventor: Thomas Michael Moors
  • Patent number: 9505182
    Abstract: Embodiments of the present disclosure relate generally to systems and methods for manufacturing an airfoil component. The system can include: a geometrical mold; an elongated flexible sleeve having a closed-off interior and positioned within the geometrical mold, wherein the elongated flexible sleeve is further positioned to have a desired geometry; an infusing channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to communicate a resinous material thereto; a vacuum channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to vacuum seal the closed-off interior of the elongated flexible sleeve; and a glass fiber layer positioned within the closed-off interior of the elongated flexible sleeve.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: November 29, 2016
    Assignee: General Electric Company
    Inventor: Thomas Michael Moors
  • Publication number: 20160009034
    Abstract: Embodiments of the present disclosure relate generally to systems and methods for manufacturing an airfoil component. The system can include: a geometrical mold; an elongated flexible sleeve having a closed-off interior and positioned within the geometrical mold, wherein the elongated flexible sleeve is further positioned to have a desired geometry; an infusing channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to communicate a resinous material thereto; a vacuum channel in fluid communication with the closed-off interior of the elongated flexible sleeve and configured to vacuum seal the closed-off interior of the elongated flexible sleeve; and a glass fiber layer positioned within the closed-off interior of the elongated flexible sleeve.
    Type: Application
    Filed: March 3, 2014
    Publication date: January 14, 2016
    Applicant: General Electric Company
    Inventor: Thomas Michael Moors
  • Publication number: 20150306858
    Abstract: Various embodiments include an infusion bolt and methods of manufacturing such a bolt. In one embodiment an infusion bolt includes: a head having an axially accessible opening extending therethrough; and a shaft extending from the head, the shaft having: an inner cavity fluidly connected with the axially accessible opening of the head; a radially outer surface surrounding the inner cavity; and a set of axially extending apertures along the radially outer surface, the set of axially extending apertures fluidly connected with the inner cavity and the axially accessible opening in the head.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 29, 2015
    Applicant: General Electric Company
    Inventor: Thomas Michael Moors
  • Publication number: 20140261970
    Abstract: A method of making a laminate component and method of removing voids from a pre-preg ply and pre-preg component are provided. The method of making a laminate includes laying up a plurality of pre-preg plies in a desired geometry, the plurality of pre-preg plies having a plurality of fibers and a resin. The method includes creating at least one void-reducing channel in at least one ply of the plurality of pre-preg plies, the void-reducing channel being perpendicular to a fiber orientation in the at least one ply. The void reducing channel locally re-orients the fibers adjacent to the void-reducing channel in the at least one pre-preg ply. The method includes laminating the plurality of pre-preg plies. The resin fills the at least one void-reducing channel and the laminate component has a porosity margin of about 1.5%.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thomas Michael MOORS, Amir Riahi
  • Patent number: 8663403
    Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. In one embodiment, the aged microstructure includes martensite and not more than about 10% reverted austenite. In another embodiment, the alloy includes substantially all martensite and substantially no reverted austenite. The alloy is useful for making turbine airfoils.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: March 4, 2014
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
  • Patent number: 8562813
    Abstract: A system for performing an in-situ polarization scan of a component surface includes a sensor connected to the component surface at a sensor connection, and the sensor generates a signal reflective of a current flow at the sensor connection. A power supply connected to the component surface at an electrical connection produces a voltage potential at the electrical connection. An electrolyte coats the sensor connection and the electrical connection. A method for performing an in-situ polarization scan of a component surface includes sensing a current flow on the component surface, generating a voltage potential on the component surface, and placing an electrolyte over at least a portion of the component surface.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 22, 2013
    Assignee: General Electric Company
    Inventor: Thomas Michael Moors
  • Publication number: 20120189425
    Abstract: A system for reducing corrosion in a compressor includes a compressor blade having a corrosion potential. A sensor connected to the compressor blade generates a signal reflective of the corrosion potential. A power supply connected to the compressor blade at an electrical connection produces an electrical potential at the electrical connection. An electrolyte coats at least a portion of the sensor and the electrical connection. A method for reducing corrosion in a compressor includes sensing a corrosion potential of a compressor blade and generating a signal reflective of the corrosion potential. The method further includes generating an electrical potential at an electrical connection on the compressor blade and flowing an electrolyte over at least a portion of the compressor blade and the electrical connection.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thomas Michael Moors, Rebecca Evelyn Hefner, Jiangiang Chen
  • Publication number: 20120186995
    Abstract: A system for performing an in-situ polarization scan of a component surface includes a sensor connected to the component surface at a sensor connection, and the sensor generates a signal reflective of a current flow at the sensor connection. A power supply connected to the component surface at an electrical connection produces a voltage potential at the electrical connection. An electrolyte coats the sensor connection and the electrical connection. A method for performing an in-situ polarization scan of a component surface includes sensing a current flow on the component surface, generating a voltage potential on the component surface, and placing an electrolyte over at least a portion of the component surface.
    Type: Application
    Filed: January 24, 2011
    Publication date: July 26, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Thomas Michael Moors
  • Patent number: 8177516
    Abstract: A shaped rotor wheel, a turbo machine including the rotor wheel, and a method for producing the same are disclosed. In an embodiment, a rotor wheel is provided which includes at least one disk member and at least one spacer member, and is a capable of carrying and axially spacing one or more stages of blades. Also disclosed is a method for producing such a rotor wheel using metal powders as a starting material, and processing the metal powder using powder metallurgy techniques.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: May 15, 2012
    Assignee: General Electric Company
    Inventors: Thomas Michael Moors, Joseph Jay Jackson
  • Publication number: 20110232809
    Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. In one embodiment, the aged microstructure includes martensite and not more than about 10% reverted austenite. In another embodiment, the alloy includes substantially all martensite and substantially no reverted austenite. The alloy is useful for making turbine airfoils.
    Type: Application
    Filed: June 8, 2011
    Publication date: September 29, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
  • Publication number: 20110189022
    Abstract: A shaped rotor wheel, a turbo machine including the rotor wheel, and a method for producing the same are disclosed. In an embodiment, a rotor wheel is provided which includes at least one disk member and at least one spacer member, and is a capable of carrying and axially spacing one or more stages of blades. Also disclosed is a method for producing such a rotor wheel using metal powders as a starting material, and processing the metal powder using powder metallurgy techniques.
    Type: Application
    Filed: February 2, 2010
    Publication date: August 4, 2011
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Thomas Michael Moors, Joseph Jay Jackson
  • Patent number: 7985306
    Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 7.0 percent nickel; about 1.25 to about 1.75 percent copper; about 0.5 to about 2.0 percent molybdenum; about 0.025 to about 0.05 percent carbon; niobium in an amount greater than about twenty times to about twenty-five times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. The aged microstructure includes martensite and not more than about 10% reverted austenite and is useful for making turbine airfoils.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: July 26, 2011
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
  • Publication number: 20100193088
    Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 7.0 percent nickel; about 1.25 to about 1.75 percent copper; about 0.5 to about 2.0 percent molybdenum; about 0.025 to about 0.05 percent carbon; niobium in an amount greater than about twenty times to about twenty-five times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. The aged microstructure includes martensite and not more than about 10% reverted austenite and is useful for making turbine airfoils.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 5, 2010
    Applicant: General Electric Company
    Inventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
  • Patent number: 7686568
    Abstract: A method for fabricating a turbine bucket and an apparatus facilitate reducing tip shroud creep. The method includes providing a turbine bucket that includes a tip shroud including at least one seal rail. The method also includes coupling at least one cutter tooth to the tip shroud, wherein the at least one cutter tooth is fabricated from an abradable material that enables the at least one cutter tooth to be removed from the tip shroud during operation of the turbine engine.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 30, 2010
    Assignee: General Electric Company
    Inventors: Thomas Michael Moors, David Scott Williams