Patents by Inventor Thomas Nowak

Thomas Nowak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200317727
    Abstract: A process for purifying a recombinant protein comprising the steps of: i) providing a solution comprising the recombinant protein; ii) adding an alkyl glycoside to the solution; and iii) purifying the recombinant protein. The addition of the alkyl glycoside provides improved clearance of process-related impurities. The purified recombinant protein of the invention has low levels of host cell DNA, host cell protein and viral contamination.
    Type: Application
    Filed: December 19, 2018
    Publication date: October 8, 2020
    Inventors: Tobias BRANDT, Hubert METZNER, Carsten HORN, Thomas NOWAK
  • Patent number: 10793954
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: May 10, 2018
    Date of Patent: October 6, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 10774423
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: September 15, 2020
    Assignee: Applied Materials, Inc.
    Inventors: Karthik Janakiraman, Thomas Nowak, Juan Carlos Rocha-Alvarez, Mark A. Fodor, Dale R. Du Bois, Amit Bansal, Mohamad Ayoub, Eller Y. Juco, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Publication number: 20200199176
    Abstract: The present invention relates to a method of filtrating a solution comprising von Willebrand Factor (VWF), the method comprising (a) providing a solution comprising VWF and a basic amino acid; and (b) subjecting the solution of step (a) to a virus filtration through a filter having a pore size of less than or equal to 35 nm.
    Type: Application
    Filed: August 23, 2018
    Publication date: June 25, 2020
    Applicant: CSL BEHRING GMBH
    Inventors: Thomas NOWAK, Holger LIND
  • Patent number: 10570517
    Abstract: Embodiments of the present invention provide apparatus and methods for performing UV treatment and chemical treatment and/or deposition in the same chamber. One embodiment of the present invention provides a processing chamber including a UV transparent gas distribution showerhead disposed above a substrate support located in an inner volume of the processing chamber, a UV transparent window disposed above the UV transparent gas distribution showerhead, and a UV unit disposed outside the inner volume. The UV unit is configured to direct UV lights towards the substrate support through the UV transparent window and the UV transparent gas distribution showerhead.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: February 25, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Amit Bansal, Dale R. Du Bois, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Scott A. Hendrickson, Thomas Nowak
  • Publication number: 20200001501
    Abstract: A nozzle unit for a reaction molding machine, comprising an inlet channel prepared for connection to a mixing head outlet and comprising a first dispensing nozzle, which is prepared for applying a reactive mixture and which is connected to the inlet channel in a first operating state, a second dispensing nozzle being present, which is connected to the inlet channel in a second operating state and which is likewise prepared for applying a reactive mixture. Further disclosed is a mixing head device for a reaction molding machine having the nozzle unit, to a reaction molding machine having the mixing head device, and to a method for producing a plastic part.
    Type: Application
    Filed: March 1, 2018
    Publication date: January 2, 2020
    Inventors: Alexander Berg, Thomas Nowak
  • Patent number: 10522375
    Abstract: A monitoring and deposition control system and method of operation thereof including: a deposition chamber for depositing a material layer on a substrate; a sensor array for monitoring deposition of the material layer for changes in a layer thickness of the material layer during deposition; and a processing unit for adjusting deposition parameters based on the changes in the layer thickness during deposition.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 31, 2019
    Assignee: Applied Materials, Inc.
    Inventors: Edward W. Budiarto, Majeed A. Foad, Ralf Hofmann, Thomas Nowak, Todd Egan, Mehdi Vaez-Iravani
  • Patent number: 10478868
    Abstract: Embodiments described herein generally relate to a particle collection apparatus and probe head for the collection of particles on process tool components. In one embodiment, a particle collection apparatus for counting particles present on a processing tool component is disclosed herein. The particle collection apparatus includes a particle collector. The particle collector is configured to scan a processing tool component and collect particles collected from the processing tool component. The particle collector includes a body and a probe head coupled to the body. The probe head has a probe body and a controlled spacing element. The controlled spacing element is coupled to the probe body and is configured to form a uniform manifold between the probe body and the processing tool component.
    Type: Grant
    Filed: November 11, 2016
    Date of Patent: November 19, 2019
    Assignee: APPLIED MATIERIALS, INC.
    Inventor: Thomas Nowak
  • Publication number: 20190304825
    Abstract: A method and apparatus for heating a substrate in a chamber are provided. an apparatus for positioning a substrate in a processing chamber. In one embodiment, the apparatus comprises a substrate support assembly having a support surface adapted to receive the substrate and a plurality of centering fingers for supporting the substrate at a distance parallel to the support surface and for centering the substrate relative to a reference axis substantially perpendicular to the support surface. The plurality of the centering fingers are movably disposed along a periphery of the support surface, and each of the plurality of centering fingers comprises a first end portion for either contacting or supporting a peripheral edge of the substrate.
    Type: Application
    Filed: June 17, 2019
    Publication date: October 3, 2019
    Inventors: Dale R. Du BOIS, Juan Carlos ROCHA-ALVAREZ, Sanjeev BALUJA, Ganesh BALASUBRAMANIAN, Lipyeow YAP, Jianhua ZHOU, Thomas NOWAK
  • Patent number: 10404372
    Abstract: A system for processing an electromagnetic signal is described, wherein the system comprises a transmission path with limited dynamic range and a pre-selection unit that is positioned upstream the transmission path. The pre-selection unit is configured to pre-select signal portions and to control the level of the output electromagnetic signal. Further, a method for processing an electromagnetic signal is described.
    Type: Grant
    Filed: January 18, 2018
    Date of Patent: September 3, 2019
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Thomas Nowak, Christian Volle
  • Patent number: 10325799
    Abstract: A method and apparatus for heating a substrate in a chamber are provided. an apparatus for positioning a substrate in a processing chamber. In one embodiment, the apparatus comprises a substrate support assembly having a support surface adapted to receive the substrate and a plurality of centering members for supporting the substrate at a distance parallel to the support surface and for centering the substrate relative to a reference axis substantially perpendicular to the support surface. The plurality of the centering members are movably disposed along a periphery of the support surface, and each of the plurality of centering members comprises a first end portion for either contacting or supporting a peripheral edge of the substrate.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: June 18, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Dale R. Du Bois, Juan Carlos Rocha-Alvarez, Sanjeev Baluja, Ganesh Balasubramanian, Lipyeow Yap, Jianhua Zhou, Thomas Nowak
  • Patent number: 10094486
    Abstract: A method and apparatus for cleaning a process chamber are provided. In one embodiment, a process chamber is provided that includes a remote plasma source and a process chamber having at least two processing regions. Each processing region includes a substrate support assembly disposed in the processing region, a gas distribution system configured to provide gas into the processing region above the substrate support assembly, and a gas passage configured to provide gas into the processing region below the substrate support assembly. A first gas conduit is configured to flow a cleaning agent from the remote plasma source through the gas distribution assembly in each processing region while a second gas conduit is configured to divert a portion of the cleaning agent from the first gas conduit to the gas passage of each processing region.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: October 9, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Ramprakash Sankarakrishnan, Dale R. Du Bois, Ganesh Balasubramanian, Karthik Janakiraman, Juan Carlos Rocha-Alvarez, Thomas Nowak, Visweswaren Sivaramakrishnan, Hichem M'Saad
  • Publication number: 20180258535
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: May 10, 2018
    Publication date: September 13, 2018
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 10060032
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: August 28, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Wenyoung Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik, Ganesh Balasubramanian
  • Patent number: 10030306
    Abstract: Apparatus and method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Grant
    Filed: October 23, 2013
    Date of Patent: July 24, 2018
    Assignee: Applied Materials, Inc.
    Inventors: Nagarajan Rajagopalan, Xinhai Han, Michael Tsiang, Masaki Ogata, Zhijun Jiang, Juan Carlos Rocha-Alvarez, Thomas Nowak, Jianhua Zhou, Ramprakash Sankarakrishnan, Ganesh Balasubramanian, Amit Kumar Bansal, Jeongmin Lee, Todd Egan, Edward Budiarto, Dmitriy Panasyuk, Terrance Y. Lee, Jian J. Chen, Mohamad A. Ayoub, Heung Lak Park, Patrick Reilly, Shahid Shaikh, Bok Hoen Kim, Sergey Starik
  • Publication number: 20180205462
    Abstract: A system for processing an electromagnetic signal is described, wherein the system comprises a transmission path with limited dynamic range and a pre-selection unit that is positioned upstream the transmission path. The pre-selection unit is configured to pre-select signal portions and to control the level of the output electromagnetic signal. Further, a method for processing an electromagnetic signal is described.
    Type: Application
    Filed: January 18, 2018
    Publication date: July 19, 2018
    Applicant: Rohde & Schwarz GmbH & Co. KG
    Inventors: Thomas Nowak, Christian Volle
  • Publication number: 20180114711
    Abstract: A monitoring and deposition control system and method of operation thereof including: a deposition chamber for depositing a material layer on a substrate; a sensor array for monitoring deposition of the material layer for changes in a layer thickness of the material layer during deposition; and a processing unit for adjusting deposition parameters based on the changes in the layer thickness during deposition.
    Type: Application
    Filed: December 13, 2017
    Publication date: April 26, 2018
    Inventors: Edward W. Budiarto, Majeed A. Foad, Ralf Hofmann, Thomas Nowak, Todd Egan, Mehdi Vaez-lravani
  • Publication number: 20180073142
    Abstract: An apparatus and method are provided for controlling the intensity and distribution of a plasma discharge in a plasma chamber. In one embodiment, a shaped electrode is embedded in a substrate support to provide an electric field with radial and axial components inside the chamber. In another embodiment, the face plate electrode of the showerhead assembly is divided into zones by isolators, enabling different voltages to be applied to the different zones. Additionally, one or more electrodes may be embedded in the chamber side walls.
    Type: Application
    Filed: November 24, 2014
    Publication date: March 15, 2018
    Applicant: Applied Materials, Inc.
    Inventors: Karthik Janakiraman, Thomas NOWAK, Juan Carlos ROCHA-ALVAREZ, Mark A. FODOR, Dale R. DU BOIS, Amit BANSAL, Mohamad AYOUB, Eller Y. JUCO, Visweswaren SIVARAMAKRISHNAN, Hichem M'SAAD
  • Publication number: 20180066364
    Abstract: A method of processing a substrate according to a PECVD process is described. Temperature profile of the substrate is adjusted to change deposition rate profile across the substrate. Plasma density profile is adjusted to change deposition rate profile across the substrate. Chamber surfaces exposed to the plasma are heated to improve plasma density uniformity and reduce formation of low quality deposits on chamber surfaces. In situ metrology may be used to monitor progress of a deposition process and trigger control actions involving substrate temperature profile, plasma density profile, pressure, temperature, and flow of reactants.
    Type: Application
    Filed: November 3, 2017
    Publication date: March 8, 2018
    Inventors: Nagarajan RAJAGOPALAN, Xinhai HAN, Michael Wenyoung TSIANG, Masaki OGATA, Zhijun JIANG, Juan Carlos ROCHA-ALVAREZ, Thomas NOWAK, Jianhua ZHOU, Ramprakash SANKARAKRISHNAN, Amit Kumar BANSAL, Jeongmin LEE, Todd EGAN, Edward BUDIARTO, Dmitriy PANASYUK, Terrance Y. LEE, Jian J. CHEN, Mohamad A. AYOUB, Heung Lak PARK, Patrick REILLY, Shahid SHAIKH, Bok Hoen KIM, Sergey STARIK, Ganesh BALASUBRAMANIAN
  • Patent number: 9870935
    Abstract: A monitoring and deposition control system and method of operation thereof including: a deposition chamber for depositing a material layer on a substrate; a sensor array for monitoring deposition of the material layer for changes in a layer thickness of the material layer during deposition; and a processing unit for adjusting deposition parameters based on the changes in the layer thickness during deposition.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: January 16, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Edward W. Budiarto, Majeed A. Foad, Ralf Hofmann, Thomas Nowak, Todd Egan, Mehdi Vaez-Iravani