Patents by Inventor Thomas S Snyder

Thomas S Snyder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5112493
    Abstract: A simple, low cost continuous process for separating and purifying zirconium and hafnium which eliminates liquid waste and facilitates the management of RCRA and LLW wastes is provided. An aqueous zirconium and hafnium--containing feed solution is prepared and fed to a continuously rotating annular chromatograph containing a bed of acid exchange resin. An acid eluant, such as hydrochloric acid, nitric acid, phosphoric acid or the like, is fed through the acid exchange bed while chromatograph is rotating, which separates the feed into substantially pure zirconium and hafnium fractions and into RCRA and LLW waste fractions. The zirconium and hafnium are processed further into nuclear quality zirconium and hafnium metals. The acid eluant is recycled for reuse in the chromatograph, and the RCRA and LLW waste fractions are disposed of in solid form.
    Type: Grant
    Filed: December 10, 1990
    Date of Patent: May 12, 1992
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Ernest D. Lee
  • Patent number: 5110566
    Abstract: The isotopes of zirconium can be partially or completely separated by loading an aqueous solution of an ionic compound of zirconium onto a cationic exchange resin with pentavalent phosphorus derived active groups which serves as the stationary phase of a chromatograph, eluting the compound with an aqueous acid and collecting distinct elution volumes representative of each isotope. In a preferred embodiment, the eluant is a strong mineral acid, such as hydrochloric acid and the chromatograph is of a type, such as a continuous annular chromatograph, that it can be operated in a continuous, steady state manner.
    Type: Grant
    Filed: July 19, 1990
    Date of Patent: May 5, 1992
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Ernest D. Lee
  • Patent number: 5102637
    Abstract: A vapor stream from a sand chlorinator containing principally zirconium tetrachloride, hafnium tetrachloride and silicon tetrachloride contaminated with ferric chloride is purified by cooling the vapor to a temperature of about 335.degree. C. to about 600.degree. C. The cooled vapors flow through a gaseous diffusion separative barrier where a silicon tetrachloride vapor stream contaminated with metal chlorides flows from the separative barrier as a "fast" stream; ferric chloride is adsorbed by the separative barrier; and a vapor stream principally containing zirconium tetrachloride, hafnium tetrachloride and silicon tetrachloride is screened by the separative barrier.
    Type: Grant
    Filed: October 12, 1990
    Date of Patent: April 7, 1992
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz
  • Patent number: 5098678
    Abstract: The isotopes of zirconium can be partially or completely separated by loading an aqueous solution of an ionic compound of zirconium onto a cationic exchange resin which serves as the stationary phase of a chromatograph, eluting the compound with an aqueous acid and collecting distinct elution volumes representative of each isotope. In a preferred embodiment, the eluant is a strong mineral acid, such as hydrochloric acid and the chromatograph is of a type, such as a continuous annular chromatograph that it can be operated in a continuous, steady state manner.
    Type: Grant
    Filed: April 27, 1990
    Date of Patent: March 24, 1992
    Assignee: Westinghouse Electric Corp.
    Inventors: Ernest D. Lee, Thomas S. Snyder, Edward J. Lahoda
  • Patent number: 5045209
    Abstract: Scandium and yttrium present in sand is recovered from the residue pulled from sand chlorinators. The residue is digested with an acid to produce a liquid containing scandium, yttrium, sodium, calcium and at least one radioactive metal of the group consisting of radium, thorium and uranium. The metal-containing liquid is then fed through a cation exchanger. The cation exchanger is eluted with an acid to produce eluate functions containing at least partially separated metals. A first eluate fraction contains at least half of the calcium and the sodium, a second eluate fraction contains at least half of the radioactive metals, a third eluate fraction contains at least half of the scandium and a fourth eluate fraction contains at least half of the yttrium which were contained in the metal-containing feed.
    Type: Grant
    Filed: September 24, 1990
    Date of Patent: September 3, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz
  • Patent number: 5024749
    Abstract: The invention is both a system and method for continuously separating heavier from lighter isotopes of a particular element, such as zirconium. The system comprises a housing, a column assembly rotatably mounted with respect to the housing which includes a plurality of vertically oriented separation cells arranged in a circle, each of which contains a packing material, both a feed electrolyte source and a barren electrolyte source, each of which has an outlet mounted in the housing for continuously introducing either a feed electrolyte or a barren electrolyte into each of the cells as they rotate past the outlets, and upper and lower electrodes disposed over the upper and lower ends of the separation cells for inducing the electromigration of the lighter zirconium ions toward the lower ends of each of the separation cells. A drain assembly disposed beneath the column assembly continuously collects isotopic enriched electrolyte from the bottom ends of the separation cells.
    Type: Grant
    Filed: April 20, 1990
    Date of Patent: June 18, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, John F. Jackovitz, Harry M. Ferrari
  • Patent number: 5023061
    Abstract: The isotopes of zirconium can be partially or completely separated by loading an essentially anhydrous alcoholic solution of an ionic compound of zirconium onto a cationic exchange resin with pentavalent phosphorus derived active groups which serves as the stationary phase of a chromatograph, eluting the compound with an essentially anhydrous alcoholic solution of hydrogen chloride and collecting distinct elution volumes representative of each isotope. In a preferred embodiment, the active groups of the cation exchange resin are derived from di-2-ethylhexyl phosphoric acid, tri-n-octyl phosphine oxide or tributyl phosphate and the chromatograph is of a type, such as a continuous annular chromatograph that it can be operated in a continuous steady state manner.
    Type: Grant
    Filed: July 2, 1990
    Date of Patent: June 11, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Ernest D. Lee
  • Patent number: 5021401
    Abstract: This is a process for fabrication of nickel-oxide insulation on a superconductor. The process utilizes; reacting oxygen-free nickel powder with oxygen-free carbon monoxide generally at 50.degree.-75.degree. C. to produce a nickel carbonyl, separating the nickel carbonyl from reaction by-products and excess reagents by cooling the carbonyl and decanting the nickel carbonyl liquor, and contacting the carbonyl to a surface of a wire containing superconductor or superconductor precursors in an atmosphere containing a controlled amount of oxygen, with the wire at 50.degree.-800.degree. C. to produce nickel suboxide insulation on the wire. The purified nickel carbonyl and oxygen may be alternately (rather than simultaneously) introduced, to deposit a series of metallic nickel films on the wire, each of which metallic films are then oxidized to a nickel suboxide.
    Type: Grant
    Filed: April 3, 1989
    Date of Patent: June 4, 1991
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz, George R. Wagner
  • Patent number: 4923579
    Abstract: A major cost component for zirconium alloy manufacture and fabrication is metal scrap generation during fabrication. This scrap, which has already incurred the entire process conversion cost from zircon sand to metal refining, constitutes an expensive cost to the fabrication process. The present invention teaches that these alloy scraps may be separated into their components by molten salt electrolysis using FLINAK electrolyte. The alloy components are recycled directly to the alloying process as cathodic grade metals, saving the cost of completely repeating the zircon conversion process.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: May 8, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz, David Zuckerbrod
  • Patent number: 4902655
    Abstract: This is a process for making precursors for tetragonally stabilized ceramic. It utilizes fluidized bed chlorination of a rare earth ore (e.g. xenotime or monazite) a separation of yttrium chloride by-product by differential condensation at 725-1200C and reaction of the yttrium-depleted blend of earth chlorides with an alkali metal alkoxide to produce a blend of rare earth alkoxides for mixing with alkoxide of zirconium and/or hafnium producing an alkoxide composite for polymerizing and processing into the ceramic.
    Type: Grant
    Filed: November 16, 1987
    Date of Patent: February 20, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stolz
  • Patent number: 4900536
    Abstract: This is a process for making precursors for ceramic superconductor. It utilizes fluidized bed chlorination of a rare earth ore (e.g. xenotime or monazite) a separation of yttrium chloride by differential condensation at 725.degree.-1200.degree. C. and reaction with an alkali metal alkoxide to produce yttrium alkoxide for mixing with alkoxide of other non-oxygen constituents of the superconductor for producing an alkoxide composite for processing into the superconductor.
    Type: Grant
    Filed: November 16, 1987
    Date of Patent: February 13, 1990
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz
  • Patent number: 4865694
    Abstract: This is an improved method for separating hafnium from zirconium of the type where a complex of zirconium and hafnium chlorides and phosphorus oxychloride is prepared from zirconium-hafnium chloride and the complex is introduced into a distillation column, with the improvement comprising: electrochemical breaking of the zirconium of hafnium chloride complex taken from said distillation column to separate product from the complex. The electrochemical breaking of the complex, possibly by reducing zirconium or hafnium, is done in a molten salt bath. Preferably, the molten salt in said molten salt bath consists principally of a mixture of alkali metal and alkaline earth metal chlorides and zirconium or hafnium chloride. The product can be either chloride, metal, or mixed metal and subchloride for further processing.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: September 12, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz, David F. McLaughlin
  • Patent number: 4865695
    Abstract: This is a method for molten salt systems related to distillation for zirconium-hafnium separation and prevents buildup of iron chloride by electrochemically reducing iron from the molten salt to give very low levels of iron chloride in the distillation column, to reduce corrosion, improve the product and, in some cases, to allow the molten salt system to be run continuously. The improvement comprises electrochemical purification of molten salt containing zirconium-hafnium chloride either, prior to introduction of the zirconium-hafnium chloride into a distillation column, or after introduction, or both, to substantially eliminate iron chloride from the zirconium-hafnium chloride. The molten salt during the electrochemical purification consists essentially of a mixture of chlorides of alkali metals, alkaline earth metals, zirconium, hafnium, aluminum, manganese, and/or zinc.
    Type: Grant
    Filed: September 12, 1988
    Date of Patent: September 12, 1989
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Richard A. Stoltz
  • Patent number: 4792385
    Abstract: Both a method and apparatus for electrolytically removing radioactive metal ions from a decontamination solution to regenerate the solution and prepare the ions for disposal as disclosed herein. At least the cathodic portion of the electrode used in the electrolysis is formed from a combustible material, such as a semi-fluidized bed of graphite particles. In the method of the invention, the decontamination solution is passed in intimate contact with the graphite particles forming the cathodic portion of the electrode as an electric potential is applied to the electrode. As a result of the electric potential, the metal ions are detached from the chelate in the decontamination solution and deposited onto the graphite particles of the cathodic portion of the electrode. After the electrode becomes spent, it is incinerated in order to reduce the volume of the resulting radioactive ash. The gases produced from the incineration are scrubbed with a scrubbing liquid to remove radioactive particles therefrom.
    Type: Grant
    Filed: November 3, 1987
    Date of Patent: December 20, 1988
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Alexander P. Murray
  • Patent number: 4780239
    Abstract: Disclosed is a method of making an ion exchange material. A ceramic material is ion implanted with sulfur, carbon, phosphorus, or nitrogen, which is oxidized to sulfate, carboxylate or carbonate, phosphate, or nitrate, respectively, or the nitrogen is reduced to amine amide. Alternatively, a mixture of ceramic powder and a binder containing sulfur, carbon, phosphorus, or nitrogen is heated in a nonoxidizing atmosphere to a temperature up to 1000.degree. C. The sulfur is then oxidized to sulfate, the carbon to carboxylate or carbonate, phosphorus to phosphate, and nitrogen to nitrate, or the nitrogen is reduced to amine or amide. Also disclosed is an ion exchange material made by these methods and a method of treating acidic aqueous solutions containing dissolved radioactive materials by passing them through an ion exchange column containing the ion exchange material.
    Type: Grant
    Filed: May 22, 1986
    Date of Patent: October 25, 1988
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Herbert A. Burgman, Martin D. Nahemow
  • Patent number: 4744973
    Abstract: Disclosed is an inorganic polymeric cationic ion exchange matrix which is the condensation polymerized reaction product of components including an alkyl compound of an element that has a valence of at least three, water, and a dopant having groups including an ion exchangeable moiety and a replaceable hydrogen. The ion exchange matrix is preferably made by adding the water to the alkyl compound first followed by the addition of the dopant, followed by heating to dryness. The resulting product is a powder or granule that can be used as an ion exchange matrix by placing it in a column and passing a solution through it which contains metal ions that are exchanged with ions on the polymer.
    Type: Grant
    Filed: November 29, 1985
    Date of Patent: May 17, 1988
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Edward J. Lahoda
  • Patent number: 4715992
    Abstract: Disclosed is a method of reducing the volume of a material containing addition polymerizable bonds by contacting the material with sufficient butyrolactone to dissolve the soluble organic material therein and form a slurry. About 0.1 to about 2% by weight, based on the slurry weight, of an addition polymerizable catalyst is added to polymerize and solidify the slurry. About 10 to about 50% by weight, based on total slurry weight, of an ethylenically unsaturated monomer, such as styrene, can be added to aid in the polymerization process. The process is especially suited to filter elements containing radioactive contaminants.
    Type: Grant
    Filed: October 30, 1985
    Date of Patent: December 29, 1987
    Assignee: Westinghouse Electric Corp.
    Inventors: Thomas S. Snyder, Herbert A. Burgman, Edward Mitchell
  • Patent number: 4584073
    Abstract: A process and apparatus for separating an isotope of an element from other isotopes of the element in a compound, where the compound is deposited as a monolayer on small glass beads, and the coated beads entrained in a carrier gas containing a scavenger gas. The entrained, coated beads are exposed to light from a laser that excites the one isotopic compound and causes reaction thereof with the scavenger gas, to form a reaction product, while the other isotopic compounds remain stable. The other isotopic compounds are then separated from the reaction product and the reaction product removed from the beads to provide the desired isotope.
    Type: Grant
    Filed: December 21, 1983
    Date of Patent: April 22, 1986
    Assignee: Westinghouse Electric Corp.
    Inventors: Edward J. Lahoda, Herbert A. Burgman, Thomas S. Snyder
  • Patent number: 4537666
    Abstract: Disclosed is a method of decontaminating metal surfaces having a radioactive coating thereon where the coating contains metal ions. An aqueous decontamination solution containing at least one chelate is passed over the coating to solubilize the metals. The decontamination solution is then passed through a porous direct current electrode to reduce the metal ions in the solution and the decontamination solution is again passed over the coating. Also disclosed is an apparatus for decontaiminating metal surfaces coated with radioactive substances. The apparatus consists of a container means for holding an aqueous decontamination solution where the solution contains a chelate, a porous cathode through which the aqueous decontamination solution is passed, and means for circulating the aqueous decontamination solution between the container means, the porous cathode, and the metal surfaces.
    Type: Grant
    Filed: March 1, 1984
    Date of Patent: August 27, 1985
    Assignee: Westinghouse Electric Corp.
    Inventors: Alexander P. Murray, Thomas S. Snyder
  • Patent number: H970
    Abstract: An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.
    Type: Grant
    Filed: June 8, 1989
    Date of Patent: October 1, 1991
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Thomas S. Snyder, Graham A. Whitlow