Patents by Inventor Thomas Tighe

Thomas Tighe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6973271
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Grant
    Filed: July 5, 2001
    Date of Patent: December 6, 2005
    Assignee: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20050255366
    Abstract: An electrochemical fuel cell stack assembly having a variable active area. The fuel cell stack uses a blocking member to selectively block the flow of reactants through channels of the flow fields of the anode and/or cathode flow paths. Blocking portions of the flow paths allows the fuel cell stack to maintain reactant flow velocities in a desired predetermined range. This enables the control and variation of the active area of the fuel cell, enhancing water management of the fuel cell stack.
    Type: Application
    Filed: May 11, 2004
    Publication date: November 17, 2005
    Inventor: Thomas Tighe
  • Publication number: 20050074241
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off-the-shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: August 19, 2004
    Publication date: April 7, 2005
    Applicant: Wave7 Optics, Inc.
    Inventors: James Farmer, John Kenny, Patrick Quinn, Thomas Tighe, Paul Whittlesey, Emmanuel Vella
  • Patent number: 6578462
    Abstract: An improved muzzle brake for reducing the momentum of the recoiling components of a gun or cannon when fired, thereby reducing the forces acting on the support platform of a weapon system, is provided. In the presence of the muzzle brake, the projectile fired from a cannon to restrains the gas flow in the axial direction until gases are allowed to be diverted to a baffle in the main body of the muzzle brake. The resultant gas flow impinges on the baffle, thereby inducing a forward thrust. The diverted gas flow then exits through a plurality of exhaust ports provided to the atmosphere to create a thrust applied to the recoiling components of the gun system. Additional thrust is created by the inclusion of a second stage baffle, offset from the main body of the muzzle brake at an optimal distance by a plurality of standoffs. This thrust generates an impulse that is applied in the opposite direction of the recoil momentum by the amount of the muzzle brake impulse.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: June 17, 2003
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Anthony R. Franchino, Thomas Tighe
  • Publication number: 20030086140
    Abstract: Unlike the conventional art which polices data at the entry points of a network, a transceiver node can police or monitor downstream bandwidths for quality of service at exit portions of an optical network. That is, the transceiver node can police downstream communication traffic near the outer edges of an optical network that are physically close to the subscribers of the optical network. In this way, a network provider can control the volume or content (or both) of downstream communications that are received by subscribers of the optical network. In addition to controlling the volume of communications that can be received by a subscriber, the transceiver node employs a plurality of priority assignment values for communication traffic. Some priority assignment values are part of a weighted random early discard algorithm that enables an output buffer to determine whether to drop data packets that are destined for a particular subscriber.
    Type: Application
    Filed: October 26, 2001
    Publication date: May 8, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Joe Caltagirone, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20030016692
    Abstract: A protocol for an optical network can control the time at which subscriber optical interfaces of an optical network are permitted to transmit data to a transceiver node. The protocol can prevent collisions of upstream transmissions between the subscriber optical interfaces of a particular subscriber group. With the protocol, a transceiver node close to the subscriber can allocate additional or reduced upstream bandwidth based upon the demand of one or more subscribers. That is, a transceiver node close to a subscriber can monitor (or police) and adjust a subscriber's upstream bandwidth on a subscription basis or on an as-needed basis. The protocol can account for aggregates of packets rather than individual packets. By performing calculation on aggregates of packets, the algorithm can execute less frequently which, in turn, permits its implementation in lower performance and lower cost devices, such as software executing in a general purpose microprocessor.
    Type: Application
    Filed: October 26, 2001
    Publication date: January 23, 2003
    Applicant: Wave7 Optics, Inc.
    Inventors: Stephen A. Thomas, Kevin Bourg, Deven Anthony, Patrick W. Quinn, James O. Farmer, John J. Kenny, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Publication number: 20020089725
    Abstract: An optical fiber network can include an outdoor bandwidth transforming node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor bandwidth transforming node does not require active cooling and heating devices that control the temperature surrounding the bandwidth transforming node. The bandwidth transforming node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The bandwidth transforming node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the bandwidth transforming node lends itself to efficient upgrading that can be performed entirely on the network side. The bandwidth transforming node can also provide high speed symmetrical data transmission. Further, the bandwidth transforming node can increase upstream and downstream bandwidth and transmission speed by propagating data signals at different wavelengths.
    Type: Application
    Filed: October 4, 2001
    Publication date: July 11, 2002
    Applicant: Wave7 Optics, Inc.
    Inventors: James O. Farmer, Paul F. Whittlesey, Patrick W. Quinn, John J. Kenny, Emmanuel A. Vella, Thomas A. Tighe
  • Publication number: 20020039218
    Abstract: An optical fiber network can include an outdoor laser transceiver node that can be positioned in close proximity to the subscribers of an optical fiber network. The outdoor laser transceiver node does not require active cooling and heating devices that control the temperature surrounding the laser transceiver node. The laser transceiver node can adjust a subscriber's bandwidth on a subscription basis or on an as-needed basis. The laser transceiver node can also offer data bandwidth to the subscriber in preassigned increments. Additionally, the laser transceiver node lends itself to efficient upgrading that can be performed entirely on the network side. The laser transceiver node can also provide high speed symmetrical data transmission. Further, the laser transceiver node can utilize off the shelf hardware to generate optical signals such as Fabry-Perot (F-P) laser transmitters, distributed feed back lasers (DFB), or vertical cavity surface emitting lasers (VCSELs).
    Type: Application
    Filed: July 5, 2001
    Publication date: April 4, 2002
    Applicant: Wave7 Optics, Inc.
    Inventors: James O. Farmer, John J. Kenny, Patrick W. Quinn, Thomas A. Tighe, Paul F. Whittlesey, Emmanuel A. Vella
  • Patent number: 6363829
    Abstract: A system for sealing an indexing primer magazine and breech assembly of a barrel-type firearm to contain exhaust gases with the flow passage transfers the increased pressure into a sealing force between the insert and indexing primer magazine. Additionally, component parts of the seal are located out of the direct path of the formed exhaust gases to increase system longevity and safety. A seal is located within a recess of either the insert or indexing primer magazine, that is separated from the flow passage for the hot combustion gases from the primer or propellant charge.
    Type: Grant
    Filed: May 15, 2000
    Date of Patent: April 2, 2002
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Anthony R. Franchino, Thomas Tighe