Patents by Inventor Thomas Tong-Long Chang

Thomas Tong-Long Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6617636
    Abstract: In a nonvolatile memory, select gates are self-aligned spacers formed on sidewalls of floating/control gate stacks. The same mask (1710) is used to remove the select gate layer from over the source lines (144), to etch trench insulation in the source line regions, and to dope the source lines. The memory can be formed in and over an isolated substrate region. The source lines can be doped at least partially before the trench insulation is etched, to prevent a short before the source lines and a region isolating the isolated substrate region from below. The memory can be erased by sectors, or alternatively a chip erase operation can be performed to erase all the cells in parallel. Peripheral transistor gates can be formed from the same layer as the select gates. The select gate spacers have extensions to which low resistance contacts can be made from overlying metal lines.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: September 9, 2003
    Assignee: Mosel Vitelic, Inc.
    Inventors: Hsing Ti Tuan, Li-Chun Li, Thomas Tong-Long Chang
  • Publication number: 20020042180
    Abstract: In a nonvolatile memory, select gates are self-aligned spacers formed on sidewalls of floating/control gate stacks. The same mask (1710) is used to remove the select gate layer from over the source lines (144), to etch trench insulation in the source line regions, and to dope the source lines. The memory can be formed in and over an isolated substrate region. The source lines can be doped at least partially before the trench insulation is etched, to prevent a short before the source lines and a region isolating the isolated substrate region from below. The memory can be erased by sectors, or alternatively a chip erase operation can be performed to erase all the cells in parallel. Peripheral transistor gates can be formed from the same layer as the select gates. The select gate spacers have extensions to which low resistance contacts can be made from overlying metal lines.
    Type: Application
    Filed: September 14, 2001
    Publication date: April 11, 2002
    Inventors: Hsing Ti Tuan, Li-Chun Li, Thomas Tong-Long Chang
  • Patent number: 6355524
    Abstract: In a nonvolatile memory, select gates are self-aligned spacers formed on sidewalls of floating/control gate stacks. The same mask (1710) is used to remove the select gate layer from over the source lines (144), to etch trench insulation in the source line regions, and to dope the source lines. The memory can be formed in and over an isolated substrate region. The source lines can be doped at least partially before the trench insulation is etched, to prevent a short before the source lines and a region isolating the isolated substrate region from below. The memory can be erased by sectors, or alternatively a chip erase operation can be performed to erase all the cells in parallel. Peripheral transistor gates can be formed from the same layer as the select gates. The select gate spacers have extensions to which low resistance contacts can be made from overlying metal lines.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: March 12, 2002
    Assignee: Mosel Vitelic, Inc.
    Inventors: Hsing Ti Tuan, Li-Chun Li, Chung Wai Leung, Thomas Tong-Long Chang
  • Patent number: 6057576
    Abstract: A technique for fabricating an integrated circuit device 100 using an inverse-T tungsten gate structure 121 overlying a silicided layer 119 is provided. This technique uses steps of forming a high quality gate oxide layer 115 overlying a semiconductor substrate 111. The silicided layer 119 is defined overlying the gate oxide layer 115. The silicided layer 119 does not substantially react to this layer. The technique defines the inverse-T tungsten gate electrode layer 121 overlying the silicided layer 119. A top surface of this gate electrode may also be silicided 127 to further reduce the resistance of this device element.
    Type: Grant
    Filed: September 24, 1998
    Date of Patent: May 2, 2000
    Assignee: Mosel Vitelic, Inc.
    Inventors: Liang-Choo Hsia, Thomas Tong-Long Chang
  • Patent number: 5858867
    Abstract: A technique for fabricating an integrated circuit device 100 using an inverse-T tungsten gate structure 121 overlying a silicided layer 119 is provided. This technique uses steps of forming a high quality gate oxide layer 115 overlying a semiconductor substrate 111. The silicided layer 119 is defined overlying the gate oxide layer 115. The silicided layer 119 does not substantially react to this layer. The technique defines the inverse-T tungsten gate electrode layer 121 overlying the silicided layer 119. A top surface of this gate electrode may also be silicided 127 to further reduce the resistance of this device element.
    Type: Grant
    Filed: May 20, 1996
    Date of Patent: January 12, 1999
    Assignee: Mosel Vitelic, Inc.
    Inventors: Liang-Choo Hsia, Thomas Tong-Long Chang
  • Patent number: 5827780
    Abstract: The surface of an integrated circuit, which uses reactive ion etching to pattern metal interconnection, is protected with two insulating layers on the surface. The first layer is a conventional silicon dioxide. The second layer is a photosensitive polymer which is the same as the material used for subsequent metalization of interconnection using the reactive ion etching technique. When the second layer is used, the reactive ion etching cannot attack the silicon dioxide.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: October 27, 1998
    Inventors: Liang Choo Hsia, Thomas Tong Long Chang