Patents by Inventor Thomas Weakley

Thomas Weakley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070216534
    Abstract: A radio frequency identification (RIFD) inlay includes an electrical connection between a chip and an antenna. The electrical connection includes conductive interposer leads and a capacitive connection. The capacitive connection may involve putting the antenna and the interposer leads into close proximity, with dielectric pads therebetween, to allow capacitive coupling between the antenna and the interposer leads. The dielectric pads may include a non-conductive adhesive and a high dielectric material, such as a titanium oxide. The connections provide a convenient, fast, and effective way to operatively couple antennas and interposers. The RFID inlay may be part of an RFID label or RFID tag.
    Type: Application
    Filed: May 23, 2007
    Publication date: September 20, 2007
    Inventors: Scott Ferguson, David Edwards, Peikang Liu, Jason Munn, Ian Forster, Samuel Linder, Thomas Weakley, David Puleston, Steven Kennedy, Christine Dang
  • Publication number: 20060226983
    Abstract: Systems and methods are disclosed herein to provide RFID device test techniques. For example, in accordance with an embodiment of the present invention, a radio frequency identification (RFID) device test system includes an RFID device tester adapted to test RFID devices that are disposed in a closely spaced configuration. The RFID device tester applies a variable threshold, to each of the RFID devices tested, based on characteristics of at least one of the RFID devices neighboring the RFID device being tested.
    Type: Application
    Filed: April 7, 2005
    Publication date: October 12, 2006
    Inventors: Ian Forster, Thomas Weakley
  • Publication number: 20060044769
    Abstract: An RFID device, such as an RFID tag or label, includes a magnetic coupler between an interposer or strap, and an antenna. The interposer or strap includes a transponder chip and an interposer magnetic coupling element that is operatively coupled to the transponder. An antenna portion magnetic coupling element is operatively coupled to the antenna. The magnetic coupling element s together constitute a magnetic coupler that is used to magnetically couple the transponder chip of the interposer to the RFID antenna. A high permeability material may be used to enhance the magnetic coupling between the magnetic coupling elements. The magnetic coupling elements single-turn conductive loops or multiple-turn coils. The magnetic coupler may function as a transformer, with the voltage across the antenna transformed to a different voltage across the transponder chip, and vice versa.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Inventors: Ian Forster, Thomas Weakley
  • Publication number: 20050282355
    Abstract: A method of thermocompressive bonding of one or more electrical devices using individual heating elements and a resilient member to force the individual heating elements into compressive engagement with the electrical devices is provided. The individual heating elements may be Curie-point heating elements or conventional resistive heating elements. A method of thermocompressive bonding of one or more electrical devices using a transparent flexible platen and thermal radiation is also provided. In one embodiment, the thermal radiation is near infra-red thermal radiation and the transparent flexible platen is composed of silicone rubber. The bonding material may be an adhesive or a thermoplastic bonding material. A method of capacitively coupling a semiconductor chip to an electrical component with a pressure sensitive adhesive is also provided. The method includes compressing the chip by forcing a flexible platen of a bonding device into compressive engagement with the semiconductor chip.
    Type: Application
    Filed: June 18, 2004
    Publication date: December 22, 2005
    Inventors: David Edwards, Jason Munn, Kouroche Kian, Reza Mehrabi, Ian Forster, Thomas Weakley
  • Publication number: 20050035924
    Abstract: A radio frequency identification (RIFD) inlay includes an interposer that has a chip, and an antenna on an antenna substrate. The antenna substrate has a recess or hole, and the chip is at least partially in the recess or hole. By placing the chip or the interposer face down and at least partially in a recess or hole, thickness of the inlay may be reduced.
    Type: Application
    Filed: June 18, 2004
    Publication date: February 17, 2005
    Inventors: Peikang Liu, Jason Munn, Thomas Weakley, Ian Forster
  • Publication number: 20050001785
    Abstract: A radio frequency identification (RIFD) inlay includes an electrical connection between a chip and an antenna. The electrical connection includes conductive interposer leads and a capacitive connection. The capacitive connection may involve putting the antenna and the interposer leads into close proximity, with dielectric pads therebetween, to allow capacitive coupling between the antenna and the interposer leads. The dielectric pads may include a non-conductive adhesive and a high dielectric material, such as a titanium oxide. The connections provide a convenient, fast, and effective way to operatively couple antennas and interposers.
    Type: Application
    Filed: June 18, 2004
    Publication date: January 6, 2005
    Inventors: Scott Ferguson, David Edwards, Peikang Liu, Jason Munn, Ian Forster, Samuel Linder, Thomas Weakley, David Puleston, Steven Kennedy, Christine Dang