Patents by Inventor Thomas Yong-Jin Han

Thomas Yong-Jin Han has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180242465
    Abstract: According to one embodiment, a method for creating a metal nanowire mesh the method includes forming a first layer of block copolymer, causing the block copolymer to become aligned in approximately straight lines, infiltrating one phase of the block copolymer with a metal, and removing the block copolymer where the metal remains after the block copolymer is removed. Furthermore, the method includes forming a second layer of block copolymer, causing the block copolymer in the second layer to become ordered in approximately straight lines oriented at an angle from greater than 0 degrees to 90 degrees from a mean direction of longitudinal axes of the remaining metal, infiltrating one phase of the block copolymer in the second layer with a second metal, and removing the block copolymer in the second layer where the second metal remains above the metal after the block copolymer in the second layer is removed.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Anna Hiszpanski, Thomas Yong-Jin Han, Carla Lim Watson, Timothy Dexter Yee
  • Patent number: 9082524
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: July 14, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Marcus A. Worsley, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Publication number: 20150192579
    Abstract: In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, each organic molecule having a primary face and a secondary face. The plurality of organic molecules preferentially interact with the one or more analytes when placed in proximity therewith. The plurality of organic molecules comprise one or more of: one or more modifying groups on the primary face in place of one or more primary hydroxyl groups; and one or more modifying groups on the secondary face in place of one or more secondary hydroxyl groups. At least one of the one or more analytes is an energetic compound. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle; and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle.
    Type: Application
    Filed: March 18, 2015
    Publication date: July 9, 2015
    Inventors: Thomas Yong-Jin Han, Carlos A. Valdez, Tammy Y. Olson, Sung Ho Kim, Joe H. Satcher
  • Patent number: 9012241
    Abstract: In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: April 21, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Thomas Yong-Jin Han, Carlos A. Valdez, Tammy Y. Olson, Sung Ho Kim, Joe H. Satcher, Jr.
  • Publication number: 20140217330
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Application
    Filed: January 15, 2014
    Publication date: August 7, 2014
    Inventors: Marcus A. WORSLEY, Thomas Yong-Jin HAN, Joshua D. KUNTZ, Octavio CERVANTES, Alexander E. GASH, Theodore F. BAUMANN, Joe H. SATCHER, Jr.
  • Patent number: 8664143
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: March 4, 2014
    Assignee: Lawrence Livermore National Security, LLC.
    Inventors: Marcus A. Worsley, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, Jr.
  • Patent number: 8257520
    Abstract: An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure according to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: September 4, 2012
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Alexander E. Gash, Thomas Yong-Jin Han, Donald J. Sirbuly
  • Publication number: 20120122652
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Application
    Filed: October 25, 2011
    Publication date: May 17, 2012
    Inventors: Marcus A. WORSLEY, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, JR.
  • Publication number: 20120028372
    Abstract: In one embodiment, a system includes a plurality of metal nanoparticles functionalized with a plurality of organic molecules tethered thereto, wherein the plurality of organic molecules preferentially interact with one or more analytes when placed in proximity therewith. According to another embodiment, a method for detecting analytes includes contacting a fluid having one or more analytes of interest therein with a plurality of metal nanoparticles, each metal nanoparticle having a plurality of organic molecules tethered thereto, and detecting Raman scattering from an analyte of interest from the fluid, the analyte interacting with one or more of the plurality of organic molecules. In another embodiment, a method includes chemically modifying a plurality of cyclodextrin molecules at a primary hydroxyl moiety to create a chemical handle, and tethering the plurality of cyclodextrin molecules to a metal nanoparticle using the chemical handle. Other systems and methods for detecting analytes are also described.
    Type: Application
    Filed: July 27, 2010
    Publication date: February 2, 2012
    Inventors: Thomas Yong-Jin Han, Carlos A. Valdez, Tammy Y. Olson, Sung Ho Kim, Joe H. Satcher, JR.
  • Publication number: 20100212787
    Abstract: An ordered energetic composite structure according to one embodiment includes an ordered array of metal fuel portions; and an oxidizer in gaps located between the metal fuel portions. An ordered energetic composite structure according to another embodiment includes at least one metal fuel portion having an ordered array of nanopores; and an oxidizer in the nanopores. A method for forming an ordered energetic composite structure according to one embodiment includes forming an ordered array of metal fuel portions; and depositing an oxidizer in gaps located between the metal fuel portions. A method for forming an ordered energetic composite structure according to another embodiment includes forming an ordered array of nanopores in at least one metal fuel portion; and depositing an oxidizer in the nanopores.
    Type: Application
    Filed: February 24, 2009
    Publication date: August 26, 2010
    Inventors: Alexander E. Gash, Thomas Yong-Jin Han, Donald J. Sirbuly
  • Publication number: 20100190639
    Abstract: A metal oxide-carbon composite includes a carbon aerogel with an oxide overcoat. The metal oxide-carbon composite is made by providing a carbon aerogel, immersing the carbon aerogel in a metal oxide sol under a vacuum, raising the carbon aerogel with the metal oxide sol to atmospheric pressure, curing the carbon aerogel with the metal oxide sol at room temperature, and drying the carbon aerogel with the metal oxide sol to produce the metal oxide-carbon composite. The step of providing a carbon aerogel can provide an activated carbon aerogel or provide a carbon aerogel with carbon nanotubes that make the carbon aerogel mechanically robust.
    Type: Application
    Filed: January 27, 2010
    Publication date: July 29, 2010
    Inventors: Marcus A. Worsley, Thomas Yong-Jin Han, Joshua D. Kuntz, Octavio Cervantes, Alexander E. Gash, Theodore F. Baumann, Joe H. Satcher, JR.