Patents by Inventor Thomas Young Chang

Thomas Young Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948614
    Abstract: The present disclosure relates to methods of manufacturing at least a portion of a magnetic layer of a magnetic recording disk. The methods include forming a plurality of sacrificial, discrete structures via imprint lithography. The sacrificial, discrete structures are used to form a plurality of three-dimensional segregant structures in a magnetic layer of the magnetic recording disk. The present disclosure also relates to corresponding magnetic recording disks.
    Type: Grant
    Filed: February 21, 2022
    Date of Patent: April 2, 2024
    Assignee: Seagate Technology LLC
    Inventors: Xiaomin Yang, Kim Yang Lee, Thomas Young Chang, ShuaiGang Xiao, Sha Zhu
  • Publication number: 20230340684
    Abstract: A method for depositing a material from a solution to a surface is provided. The method includes depositing, through a deposition channel of a material depositor, the solution in a rich state to the surface, wherein the solution in the rich state includes an initial concentration of the material, onto a surface, applying a predefined electrical output, by the material depositor, through the deposited solution to adhere the material to the surface, and to yield the solution in a depleted state wherein the solution in the depleted state contains a different concentration of the material from the rich solution, and removing, through a removal channel in the material depositor, the deposited solution in the depleted state. The material depositor includes a hydrophilic region defined by a hydrophilic surface through which the material depositor conducts the depositing and the removing and a hydrophobic barrier circumscribing the hydrophilic region.
    Type: Application
    Filed: April 24, 2023
    Publication date: October 26, 2023
    Inventors: Thomas Young CHANG, Kim Yang LEE, Mark T. KIEF, Riyan Alex MENDONSA, Brett R. HERDENDORF
  • Publication number: 20230267959
    Abstract: The present disclosure relates to methods of manufacturing at least a portion of a magnetic layer of a magnetic recording disk. The methods include forming a plurality of sacrificial, discrete structures via imprint lithography. The sacrificial, discrete structures are used to form a plurality of three-dimensional segregant structures in a magnetic layer of the magnetic recording disk. The present disclosure also relates to corresponding magnetic recording disks.
    Type: Application
    Filed: February 21, 2022
    Publication date: August 24, 2023
    Applicant: Seagate Technology LLC
    Inventors: Xiaomin Yang, Kim Yang Lee, Thomas Young Chang, ShuaiGang Xiao, Sha Zhu
  • Publication number: 20230267958
    Abstract: The present disclosure relates to magnetic recording disks having a magnetic recording layer that includes a plurality of three-dimensional segregant structures. Each three-dimensional segregant structure extends from a first radius of the recording disk to a second radius of the recording disk, and each three-dimensional segregant structure is made of a first segregant material. The magnetic recording layer also includes a plurality of magnetic grains between adjacent three-dimensional segregant structures, and a second segregant material between adjacent magnetic grains. The present disclosure also relates to corresponding methods of manufacturing such a magnetic recording layer.
    Type: Application
    Filed: February 21, 2022
    Publication date: August 24, 2023
    Inventors: ShuaiGang Xiao, Thomas Young Chang, Kim Yang Lee, Xiaomin Yang
  • Patent number: 11732295
    Abstract: Apparatus and methods relating to DNA sequencing are provided. In one embodiment, a DNA sequencing device includes a nanochannel having a width that is approximately 0.3 nm to approximately 20 nm. A pair of electrodes having portions exposed to the nanochannel may form a tunneling current electrode (TCE) with an electrode gap of approximately 0.1 nm to approximately 2 nm, and more particularly about 0.3 nm to about 1 nm. In one embodiment, at least one of the pair of electrodes is formed as a suspended electrode. An actuator may be associated with the suspended electrode to displace it relative to the other electrode. In various embodiments, the nanochannel and/or the electrodes may be formed using thermal reflow processes to reduce the size of such features.
    Type: Grant
    Filed: December 30, 2020
    Date of Patent: August 22, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Xiaomin Yang, ShuaiGang Xiao, David S. Kuo, Koichi Wago, Thomas Young Chang
  • Patent number: 11724233
    Abstract: A first wafer has a first stop layer deposited on a substrate, the substrate used to form a base support structure. A second wafer has a second stop layer deposited on a sacrificial substrate, and a filter layer deposited on the second stop layer. A rib layer is deposited on one of: the first stop layer of the first layer; or a third stop layer that is deposited over the filter layer. A rib pattern is formed in the rib layer. The first and second wafers are flip bonded such that the rib pattern is joined between the filter layer and the first stop layer. Elongated voids are formed within the filter layer. The base support structure is formed within the substrate of the first wafer such that there is a fluid flow path between the base support structure, the rib layer, and the elongated voids of the filter layer.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: August 15, 2023
    Assignee: Seagate Technology LLC
    Inventors: Thomas Young Chang, Kim Yang Lee, Tan G. Liu, Yautzong Hsu, Shuaigang Xiao
  • Patent number: 11714061
    Abstract: A DNA sequencing device, and related methods, include a nanopore or nanochannel structure, and a nanoelectrode. The nanoelectrode includes electrode members having free ends exposed within the nanopore or nanochannel structure, an electrode gap defined between of the free ends, and plated portions formed on the free ends to provide a reduced sized for the electrode gap.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: August 1, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: David S. Kuo, Xiaomin Yang, ShuaiGang Xiao, Kim Yang Lee, Koichi R. Wago, Thomas Young Chang
  • Publication number: 20230215461
    Abstract: A heat-assisted magnetic recording (HAMR) device is configured to write regions of neutral polarity on a magnetic media during a same pass of the recording head in which other regions are written of positive polarity and negative polarity. The various disclosed write techniques may facilitate creation of “zero state” (substantially net zero polarity) transition zones between each pair of data bits of opposite polarity and/or may facilitate the encoding of three different logical states (e.g., 1, 0, and ?1) on the media.
    Type: Application
    Filed: March 9, 2023
    Publication date: July 6, 2023
    Inventors: Thomas Young CHANG, Philip L. STEINER, Zengyuan LIU
  • Patent number: 11626134
    Abstract: A heat-assisted magnetic recording (HAMR) device is configured to write regions of neutral polarity on a magnetic media during a same pass of the recording head in which other regions are written of positive polarity and negative polarity. The various disclosed write techniques may facilitate creation of “zero state” (substantially net zero polarity) transition zones between each pair of data bits of opposite polarity and/or may facilitate the encoding of three different logical states (e.g., 1, 0, and ?1) on the media.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 11, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Thomas Young Chang, Philip L. Steiner, Zengyuan Liu
  • Patent number: 11626136
    Abstract: A heat-assisted magnetic recording (HAMR) device is configured to write regions of neutral polarity on a magnetic media during a same pass of the recording head in which other regions are written of positive polarity and negative polarity. The various disclosed write techniques may facilitate creation of “zero state” (substantially net zero polarity) transition zones between each pair of data bits of opposite polarity and/or may facilitate the encoding of three different logical states (e.g., 1, 0, and ?1) on the media.
    Type: Grant
    Filed: December 29, 2021
    Date of Patent: April 11, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Thomas Young Chang, Philip L. Steiner, Zengyuan Liu
  • Patent number: 11542552
    Abstract: A DNA sequencing device and related methods, wherein the device includes a substrate, a nanochannel formed in the substrate, a first electrode positioned on a first side of the nanochannel, and a second electrode. The second electrode is positioned on a second side of the nanochannel opposite the first electrode and is spaced apart from the first electrode to form an electrode gap that is exposed in the nanochannel. At least a portion of first electrode is movable relative to the second electrode to decrease a size of the electrode gap.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 3, 2023
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Kim Yang Lee, Thomas Young Chang, David S. Kuo, ShuaiGang Xiao, Xiaomin Yang, Koichi Wago
  • Patent number: 11396675
    Abstract: Apparatus and methods to identify nucleotides of a DNA strand. The method includes exposing the DNA strand to a first dye or peptide, attaching the first dye or peptide to a first type of nucleotide (A,T,C,G) of the DNA strand, the first dye or peptide changing a conductance of the first type of nucleotide to which the first dye or peptide is attached, and measuring a tunneling current signal for all nucleotides of the DNA strand, the changed conductance of the first type of nucleotide providing amplified tunneling current discrimination of the nucleotides of the DNA strand.
    Type: Grant
    Filed: August 24, 2020
    Date of Patent: July 26, 2022
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Thomas Young Chang, Philip L. Steiner, Kim Yang Lee, David S. Kuo
  • Patent number: 11377686
    Abstract: A DNA sequencing device having a first conductor electrically insulated from a second conductor, a voltage source and an amplifier electrically connected in series with the first conductor and the second conductor, a DNA polymerase attached to the first conductor and to the second conductor with matching biotinylated tag molecules, and an electric current monitor. A non-discriminating electrical signal is provided by the polymerase during pairing, which signal can be used as a marker to indicate that transcription is occurring between a single-type of free nucleotide and a base nucleotide of a template DNA strand.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: July 5, 2022
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventor: Thomas Young Chang
  • Patent number: 11320397
    Abstract: A DNA sequencing device, and related method, which include an electrode and a plurality of spaced apart alignment structures. The electrode defines an electrode gap, the electrode being operable to detect a change in tunneling current as a DNA strand passes through the electrode gap. The plurality of spaced apart alignment structures are arranged to position nucleotides of the DNA strand in a predetermined orientation as the DNA strand passes through the electrode gap.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: May 3, 2022
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Thomas Young Chang, David S. Kuo, Kim Yang Lee, Koichi Wago
  • Patent number: 11136624
    Abstract: A DNA sequencing device, and related methods, include a nanochannel sized to receive a DNA strand, a first electrode member exposed within the nanochannel, and a second electrode member exposed within the nanochannel and spaced apart from the first electrode to form an electrode gap. The second electrode member has a wedge shaped profile, and the first and second electrode members are operable to detect a change in electronic signal as the DNA strand passes through the electrode gap.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: October 5, 2021
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Kim Yang Lee, David S. Kuo, Thomas Young Chang, Xiaomin Yang, ShuaiGang Xiao, Koichi Wago
  • Publication number: 20210245109
    Abstract: A first wafer has a first stop layer deposited on a substrate, the substrate used to form a base support structure. A second wafer has a second stop layer deposited on a sacrificial substrate, and a filter layer deposited on the second stop layer. A rib layer is deposited on one of: the first stop layer of the first layer; or a third stop layer that is deposited over the filter layer. A rib pattern is formed in the rib layer. The first and second wafers are flip bonded such that the rib pattern is joined between the filter layer and the first stop layer. Elongated voids are formed within the filter layer. The base support structure is formed within the substrate of the first wafer such that there is a fluid flow path between the base support structure, the rib layer, and the elongated voids of the filter layer.
    Type: Application
    Filed: July 9, 2020
    Publication date: August 12, 2021
    Inventors: Thomas Young Chang, Kim Yang Lee, Tan G. Liu, Yautzong Hsu, Shuaigang Xiao
  • Publication number: 20210115508
    Abstract: Apparatus and methods relating to DNA sequencing are provided. In one embodiment, a DNA sequencing device includes a nanochannel having a width that is approximately 0.3 nm to approximately 20 nm. A pair of electrodes having portions exposed to the nanochannel may form a tunneling current electrode (TCE) with an electrode gap of approximately 0.1 nm to approximately 2 nm, and more particularly about 0.3 nm to about 1 nm. In one embodiment, at least one of the pair of electrodes is formed as a suspended electrode. An actuator may be associated with the suspended electrode to displace it relative to the other electrode. In various embodiments, the nanochannel and/or the electrodes may be formed using thermal reflow processes to reduce the size of such features.
    Type: Application
    Filed: December 30, 2020
    Publication date: April 22, 2021
    Inventors: Xiaomin YANG, ShuaiGang XIAO, David S. KUO, Koichi WAGO, Thomas Young CHANG
  • Publication number: 20210054447
    Abstract: A DNA sequencing device having a first conductor electrically insulated from a second conductor, a voltage source and an amplifier electrically connected in series with the first conductor and the second conductor, a DNA polymerase attached to the first conductor and to the second conductor with matching biotinylated tag molecules, and an electric current monitor. A non-discriminating electrical signal is provided by the polymerase during pairing, which signal can be used as a marker to indicate that transcription is occurring between a single-type of free nucleotide and a base nucleotide of a template DNA strand.
    Type: Application
    Filed: July 21, 2020
    Publication date: February 25, 2021
    Inventor: Thomas Young Chang
  • Patent number: 10889857
    Abstract: Apparatus and methods relating to DNA sequencing are provided. In one embodiment, a DNA sequencing device includes a nanochannel having a width that is approximately 0.3 nm to approximately 20 nm. A pair of electrodes having portions exposed to the nanochannel may form a tunneling current electrode (TCE) with an electrode gap of approximately 0.1 nm to approximately 2 nm, and more particularly about 0.3 nm to about 1 nm. In one embodiment, at least one of the pair of electrodes is formed as a suspended electrode. An actuator may be associated with the suspended electrode to displace it relative to the other electrode. In various embodiments, the nanochannel and/or the electrodes may be formed using thermal reflow processes to reduce the size of such features.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: January 12, 2021
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Xiaomin Yang, ShuaiGang Xiao, David S. Kuo, Koichi Wago, Thomas Young Chang
  • Publication number: 20200385799
    Abstract: Apparatus and methods to identify nucleotides of a DNA strand. The method includes exposing the DNA strand to a first dye or peptide, attaching the first dye or peptide to a first type of nucleotide (A,T,C,G) of the DNA strand, the first dye or peptide changing a conductance of the first type of nucleotide to which the first dye or peptide is attached, and measuring a tunneling current signal for all nucleotides of the DNA strand, the changed conductance of the first type of nucleotide providing amplified tunneling current discrimination of the nucleotides of the DNA strand.
    Type: Application
    Filed: August 24, 2020
    Publication date: December 10, 2020
    Inventors: Thomas Young CHANG, Philip L. STEINER, Kim Yang LEE, David S. KUO