Patents by Inventor Tianyu Meng

Tianyu Meng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240234808
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Application
    Filed: March 26, 2024
    Publication date: July 11, 2024
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11967678
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Grant
    Filed: January 16, 2023
    Date of Patent: April 23, 2024
    Assignee: Solid Energies, Inc.
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Publication number: 20230291072
    Abstract: Fabricating a composite solid-state electrolyte (SSE) membrane by infiltrating a porous polymer substrate with a mixture which comprises: (i) polymer precursor, (ii) ceramic nanoparticles with diameters that range from 10 to 2000 nm, (iii) plasticizer and (iv) lithium salt. Curing the mixture yields a solid-state electrolyte which is formed within pores of the substrate. A continuous roll-to-roll system for manufacturing of large-dimension, flexible, ultrathin, high ionic conductivity (SSE) membrane advances a porous polymer substrate through a coating module, multifunctional module for post-treatment curing and calendar unit. The SSE membrane is used in all solid-state lithium-ion electrochemical pouch cells. The SSE membrane exhibits high ionic conductivity over wide temperature range, especially high value in low temperature (?40° C.).
    Type: Application
    Filed: May 16, 2023
    Publication date: September 14, 2023
    Inventors: Zhigang Lin, Tianyu Meng
  • Publication number: 20230155168
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Application
    Filed: January 16, 2023
    Publication date: May 18, 2023
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11631890
    Abstract: In solid-state lithium-ion battery cells, electrolyte-infiltrated composite electrode includes an electrolyte component consisting of polymer matrix with ceramic nanoparticles embedded in the matrix to form networking structure of electrolyte. The networking structure establishes effective lithium-ion transport pathway in the electrode. Electrolyte-infiltrated composite electrode sheets and solid electrolyte membranes can be used in all solid-state lithium electrochemical pouch and coin cells. Solid-state lithium-ion battery is fabricated by: (a) providing an anode layer; (b) providing a cathode layer; (c) positioning a ceramic-polymer composite electrolyte membrane between the anode layer and the cathode layer to form a laminar battery assembly; (d) applying pressure to the laminar battery assembly; and (e) heating the laminar battery assembly.
    Type: Grant
    Filed: May 6, 2021
    Date of Patent: April 18, 2023
    Assignee: Solid Energies Inc.
    Inventors: Zhigang Lin, Tianyu Meng
  • Patent number: 11588176
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: February 21, 2023
    Assignee: Bioenno Tech LLC
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Publication number: 20230035720
    Abstract: Fabricating a composite solid-state electrolyte (SSE) membrane by infiltrating a porous polymer substrate with a mixture which comprises: (i) polymer precursor, (ii) ceramic nanoparticles with diameters that range from 10 to 2000 nm, (iii) plasticizer and (iv) lithium salt. Curing the mixture yields a solid-state electrolyte which is formed within pores of the substrate. A continuous roll-to-roll system for manufacturing of large-dimension, flexible, ultrathin, high ionic conductivity (SSE) membrane advances a porous polymer substrate through a coating module, multifunctional module for post-treatment curing and calendar unit. The SSE membrane is used in all solid-state lithium-ion electrochemical pouch cells. The SSE membrane exhibits high ionic conductivity over wide temperature range, especially high value in low temperature (?40° C.).
    Type: Application
    Filed: July 30, 2021
    Publication date: February 2, 2023
    Inventors: Zhigang Lin, Tianyu Meng
  • Publication number: 20220359906
    Abstract: In solid-state lithium-ion battery cells, electrolyte-infiltrated composite electrode includes an electrolyte component consisting of polymer matrix with ceramic nanoparticles embedded in the matrix to form networking structure of electrolyte. The networking structure establishes effective lithium-ion transport pathway in the electrode. Electrolyte-infiltrated composite electrode sheets and solid electrolyte membranes can be used in all solid-state lithium electrochemical pouch and coin cells. Solid-state lithium-ion battery is fabricated by: (a) providing an anode layer; (b) providing a cathode layer; (c) positioning a ceramic-polymer composite electrolyte membrane between the anode layer and the cathode layer to form a laminar battery assembly; (d) applying pressure to the laminar battery assembly; and (e) heating the laminar battery assembly.
    Type: Application
    Filed: May 6, 2021
    Publication date: November 10, 2022
    Inventors: Zhigang Lin, Tianyu Meng
  • Publication number: 20220216505
    Abstract: Electrolyte-infiltrated composite electrode includes an electrolyte component consisting of a polymer matrix with ceramic nanoparticles embedded in the matrix to form a networking structure of electrolyte. Suitable ceramic nanoparticles have the basic formula Li7La3Zr2O12 (LLZO) and its derivatives such as AlxLi7-xLa3Zr2-y-zTayNbzO12 where x ranges from 0 to 0.85, y ranges from 0 to 0.50 and z ranges from 0 to 0.75, wherein at least one of x, y and z is not equal to 0. The networking structure of the electrolyte establishes an effective lithium-ion transport pathway in the electrode and strengthens the contact between electrode layer and solid-state electrolyte resulting in higher lithium-ion electrochemical cell's cycling stability and longer battery life. Sold-state electrolytes incorporating the ceramic particles demonstrate improved performance.
    Type: Application
    Filed: January 4, 2021
    Publication date: July 7, 2022
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng
  • Patent number: 11223088
    Abstract: Ceramic-polymer film includes a polymer matrix, plasticizers, a lithium salt, and a ceramic nanoparticle, LLZO: AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0 to 0.85. The nanoparticles have diameters that range from 20 to 2000 nm and the film has an ionic conductivity of greater than 1×10?4 S/cm (?20° C. to 10° C.) and larger than 1×10?3 S/cm (?20° C.). Using a combination of selected plasticizers to tune the ionic transport temperature dependence enables the battery based on the ceramic-polymer film to be operable in a wide temperature window (?40° C. to 90° C.). Large size nanocomposite film (area ?8 cm×6 cm) can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. This large size film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical pouch cell and further assembled into battery packs.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 11, 2022
    Assignee: BIOENNO TECH LLC
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng, Shuyi Chen, Kevin Zanjani
  • Publication number: 20210102063
    Abstract: Ceramic-polymer film includes a polymer matrix, plasticizers, a lithium salt, and a ceramic nanoparticle, LLZO: AlxLi7-xLa3Zr1.75Ta0.25O12 where x ranges from 0 to 0.85. The nanoparticles have diameters that range from 20 to 2000 nm and the film has an ionic conductivity of greater than 1×10?4 S/cm (?20° C. to 10° C.) and larger than 1×10?3 S/cm (?20° C.). Using a combination of selected plasticizers to tune the ionic transport temperature dependence enables the battery based on the ceramic-polymer film to be operable in a wide temperature window (?40° C. to 90° C.). Large size nanocomposite film (area ?8 cm×6 cm) can be formed on a substrate and the concentration of LLZO nanoparticles decreases in the direction of the substrate to form a concentration gradient over the thickness of the film. This large size film can be employed as a non-flammable, solid-state electrolyte for lithium electrochemical pouch cell and further assembled into battery packs.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 8, 2021
    Inventors: Zhigang Lin, Chunhu Tan, Tianyu Meng, Shuyi Chen, Kevin Zanjani