Patents by Inventor Tiepeng Zhao

Tiepeng Zhao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10436848
    Abstract: The present disclosure relates to a battery capacity active estimation method for an electric vehicle. The method is capable of determining the battery capacity based on estimating a State Of Charge (SOC) of the battery before and after a discharge operation but without having to wait until an establishment of sufficient thermal and electric equilibria in the battery. The estimation of SOC may even be made while the battery is being slowly charged. Depending on the equilibrium state of the battery, SOCs may be either directly obtained by measuring Open Circuit Voltage of the battery when the battery is in electric equilibrium or calculated and estimated when the battery is not in electric equilibrium.
    Type: Grant
    Filed: August 25, 2017
    Date of Patent: October 8, 2019
    Assignees: Bordrin Motor Corporation, Inc., Nanjing Shenghe New Energy Technology Co., Ltd., Huai'an Junsheng New Energy Technology Co., Ltd.
    Inventors: Yonghua Li, Yang Zhang, Tiepeng Zhao, Zhiwei Zhang
  • Publication number: 20180340983
    Abstract: The present disclosure relates to a battery capacity active estimation method for an electric vehicle. The method is capable of determining the battery capacity based on estimating a State Of Charge (SOC) of the battery before and after a discharge operation but without having to wait until an establishment of sufficient thermal and electric equilibria in the battery. The estimation of SOC may even be made while the battery is being slowly charged. Depending on the equilibrium state of the battery, SOCs may be either directly obtained by measuring Open Circuit Voltage of the battery when the battery is in electric equilibrium or calculated and estimated when the battery is not in electric equilibrium.
    Type: Application
    Filed: August 25, 2017
    Publication date: November 29, 2018
    Inventors: Yonghua Li, Yang Zhang, Tiepeng Zhao, Zhiwei Zhang
  • Publication number: 20180287223
    Abstract: A power battery pack may include several pouch or hard-shelled electrochemical cells. A safety structure for the power battery pack may include an expansion absorption layer, a supporting and fixing tray, an upper module press plate, a lower module bottom plate, and the like. There are multiple supporting and fixing trays and multiple expansion absorption layers. The multiple supporting and fixing trays are sequentially disposed from top to bottom layer by layer. One single electrochemical cell is disposed in each of the supporting and fixing trays. One expansion absorption layer is laid on a top surface of each single electrochemical cell. The upper module press plate is disposed in a manner of covering the topmost supporting and fixing tray. The lower module bottom plate is disposed on a bottom surface of the bottommost supporting and fixing tray. A strain sensor is disposed in the center of a top surface of the topmost single electrochemical cell.
    Type: Application
    Filed: November 14, 2017
    Publication date: October 4, 2018
    Inventors: Chong Yok Meng, Haoxing Zhao, Zhiwei Zhang, Yonghua Li, Tiepeng Zhao
  • Patent number: 9985273
    Abstract: A preparation method of a three-dimensional nanosized porous metal oxide electrode material of lithium ion battery, which soaks a dried polymer colloidal crystal microsphere template in a metal salt solution as a precursor solution for a period of time, and obtains a precursor template complex after filtration and drying; heats the precursor template complex to a certain temperature at a low heating rate and keeps the temperature, and then obtains the three-dimensional nanosized porous metal oxide electrode material of lithium ion battery after cooling to room temperature. A metal oxide electrode material is manufactured, with the three-dimensional nanosized porous metal oxide electrode material thereby improving the ionic conductivity of the negative electrode material of lithium ion battery, and shortens the diffusion path of the lithium ions during an electrochemical reaction process, and improves the rate discharge performance of lithium ion battery greatly.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: May 29, 2018
    Assignee: SHANGHAI ZHONGKE SHENJIANG ELECTRIC VEHICLE CO., LTD
    Inventors: Jiangming Sun, Tiepeng Zhao, Zhigang Xu, Yanbing Wang, Gang Wang, Ming Zhang, Shirong Xie
  • Publication number: 20130143115
    Abstract: A preparation method of a three-dimensional nanosized porous metal oxide electrode material of lithium ion battery, which soaks a dried polymer colloidal crystal microsphere template in a metal salt solution as a precursor solution for a period of time, and obtains a precursor template complex after filtration and drying; heats the precursor template complex to a certain temperature at a low heating rate and keeps the temperature, and then obtains the three-dimensional nanosized porous metal oxide electrode material of lithium ion battery after cooling to room temperature. A metal oxide electrode material is manufactured, with the three-dimensional nanosized porous metal oxide electrode material thereby improving the ionic conductivity of the negative electrode material of lithium ion battery, and shortens the diffusion path of the lithium ions during an electrochemical reaction process, and improves the rate discharge performance of lithium ion battery greatly.
    Type: Application
    Filed: June 27, 2011
    Publication date: June 6, 2013
    Applicant: Shanghai Zhongke Shenjiang Electric Vehicle Co., Ltd.
    Inventors: Jiangming Sun, Tiepeng Zhao, Zhigang Xu, Yanbing Wang, Gang Wang, Ming Zhang, Shirong Xie