Patents by Inventor Tim DIEHLMANN

Tim DIEHLMANN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11890793
    Abstract: The present invention relates to a method for assembling moulded bodies. The invention also relates to a moulded body which comprises a foam and at least one fibre (F), the fibre (F) is within a fibre range (FB2) inside the moulded body and is at least once at least partially divided, wherein at least one fibre (F) is completely divided. The invention further relates to the thus obtained assembled moulded body, and to a panel with contains the assembled moulded body and at least one layer (S1). The invention further relates to a method for producing the panel and to the use of the assembled moulded body and the claimed panel, for example, as a rotor blade in wind turbines.
    Type: Grant
    Filed: May 17, 2017
    Date of Patent: February 6, 2024
    Assignee: BASF SE
    Inventors: Robert Stein, Holger Ruckdaeschel, Rene Arbter, Tim Diehlmann, Gregor Daun, Marc Claude Martin
  • Publication number: 20200331179
    Abstract: The present invention relates to a process for converting moldings. Here, a molding comprising a foam and at least one fiber (F), wherein the fiber (F) is with a fiber region (FB2) located inside the molding is at least partially divided at least once, wherein at least one fiber (F) is completely divided. The invention further relates to the thus obtainable converted molding and to a panel comprising the converted molding and at least one layer (S1). The present invention further relates to a process for producing the panel and to the use of the converted molding/the panel according to the invention as a rotor blade in wind turbines for example.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 22, 2020
    Inventors: Robert STEIN, Holger RUCKDAESCHEL, Rene ARBTER, Tim DIEHLMANN, Gregor DAUN, Marc Claude MARTIN
  • Publication number: 20200317879
    Abstract: The present invention relates to a molding made of foam, wherein at least one fiber (F) is located partly within the molding, i.e. is surrounded by the foam. The two ends of the respective fiber (F) not surrounded by the foam thus each project from one side of the molding. The foam is produced by polymerization of a reactive mixture (rM) comprising at least one compound having isocyanate-reactive groups, at least one blowing agent and at least one polyisocyanate.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 8, 2020
    Inventors: Robert Stein, Gianpaolo Tomasi, Ludwig Windeler, Christian Renner, Holger Ruckdaeschel, Tim Diehlmann, Rene Arbter, Marc Claude Martin
  • Publication number: 20200316907
    Abstract: The present invention relates to a molding which comprises a foam and at least one fiber (F). The fiber (F) has a first part (FT1), a second part (FT2) and a third part (FT3). The third part (FT3) of the fiber (F) connects the first part (FT1) and the second part (FT2) of the fiber (F) and is arranged on a second side of the foam. A first region (FB11) of the first part (FT1) of the fiber (F) and a first region (FB12) of the second part (FT2) of the fiber (F) are located inside the molding and are not in contact. A second region (FB21) of the first part (FT1) of the fiber (F) and a second region (FB22) of the second part (FT2) of the fiber (F) project from a first side of the foam. The present invention further relates to a process for producing the moldings according to the invention and to a panel which comprises the molding according to the invention and at least one layer (S1) and also to a process for producing the panel.
    Type: Application
    Filed: May 17, 2017
    Publication date: October 8, 2020
    Inventors: Robert STEIN, Holger RUCKDAESCHEL, Rene ARBTER, Tim DIEHLMANN, Gregor DAUN, Marc Claude MARTIN
  • Publication number: 20200215727
    Abstract: The present invention relates to a process for the production of a structured grain on the surface of a thermoplastic having continuous-fiber reinforcement by a textile sheet, where a mixture of at least one fiber material and of at least one thermoplastic is heated and pressed in a mold to a temperature above the softening point of the thermoplastic, where a structured grain has been applied on the internal side of the mold. The at least one fiber material comprises continuous fibers and takes the form of a regularly arranged textile sheet. The textile sheet and the structured grain on the internal side of the mold are oriented in relation to one another in a manner such that during the pressing procedure the textile sheet and the structured grain on the internal side of the mold are mutually superposed.
    Type: Application
    Filed: July 19, 2018
    Publication date: July 9, 2020
    Applicant: BASF SE
    Inventors: Tim DIEHLMANN, Andreas RADTKE, Ulrich SCHNEIDER, Reinhard JAKOBI
  • Patent number: 10543664
    Abstract: The present invention relates to a process for producing a molding made from blowing agent-containing foam comprising at least one fiber (F), wherein the at least one fiber (F) is partially introduced into the blowing agent-containing foam. The two ends of the respective fiber (F) that are not surrounded by the blowing agent-containing foam thus project from one side of the corresponding molding. The present invention also provides the molding as such. The present invention further provides a panel comprising at least one such molding, produced by the process according to the invention, and at least one further layer (S1). The present invention also provides for the production of the panels of the invention and for the use thereof, for example as a rotor blade in wind turbines.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: January 28, 2020
    Assignee: BASF SE
    Inventors: Holger Ruckdäschel, Rene Arbter, Robert Stein, Daniela Longo-Schedel, Tim Diehlmann, Bangaru Sampath, Peter Gutmann, Alexandre Terrenoire, Markus Hartenstein, Andreas Kirgis, Alessio Morino, Gregor Daun, Marc Claude Martin, Peter Merkel, Thomas Kiciak
  • Patent number: 10232556
    Abstract: The invention relates to a process for the production of at least two-layer thermoplastic sheets via thermal welding of at least one thinner thermoplastic sheet with density (D1) and of at least one second thinner thermoplastic sheet with density (D2), where the density (D1) of the first thinner thermoplastic sheet is smaller than the density (D2) of the second thinner thermoplastic sheet. The process introduces at least one first heating element and at least one second heating element along mutually offset planes between the two thinner thermoplastic sheets, where the surfaces of the thinner thermoplastic sheets do not touch the surfaces of the heating elements. The first heating element transfers a quantity of energy (E1) to the surface of the first thinner thermoplastic sheet, and the second heating element transfers a quantity of energy (E2) to the surface of the second thinner thermoplastic sheet, where the quantity of energy (E1) is smaller than the quantity of energy (E2).
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: March 19, 2019
    Assignee: BASF SE (Ellwanger & Baier Patentanwälte)
    Inventors: Eckhard Neufeld, Carsten Sandner, Tim Diehlmann, Franz-Josef Dietzen, Dietrich Scherzer
  • Publication number: 20180257345
    Abstract: The present invention relates to a process for producing a molding made from blowing agent-containing foam comprising at least one fiber (F), wherein the at least one fiber (F) is partially introduced into the blowing agent-containing foam. The two ends of the respective fiber (F) that are not surrounded by the blowing agent-containing foam thus project from one side of the corresponding molding. The present invention also provides the molding as such. The present invention further provides a panel comprising at least one such molding, produced by the process according to the invention, and at least one further layer (S1). The present invention also provides for the production of the panels of the invention and for the use thereof, for example as a rotor blade in wind turbines.
    Type: Application
    Filed: December 15, 2015
    Publication date: September 13, 2018
    Inventors: Holger RUCKDÄSCHEL, Rene ARBTER, Robert STEIN, Daniela LONGO-SCHEDEL, Tim DIEHLMANN, Bangaru SAMPATH, Peter GUTMANN, Alexandre TERRENOIRE, Markus HARTENSTEIN, Andreas KIRGIS, Alessio MORINO, Gregor DAUN, Marc Claude MARTIN, Peter MERKEL, Thomas KICIAK
  • Patent number: 10000014
    Abstract: The present invention relates to a process for the production of at least two-layer thermoplastic foam sheets via thermal welding of at least two thinner thermoplastic foam sheets. In the process of the invention, at least two heating elements are conducted on mutually offset planes between the surfaces to be welded of the thinner thermoplastic foam sheets, and the foam sheets here do not touch the heating elements. The number of layers of the thermoplastic foam sheet is per se a result of the number of thinner thermoplastic foam sheets that are thermally welded to one another. If by way of example three thinner thermoplastic foam sheets are thermally welded to one another, a three-layer thermoplastic foam sheet is per se obtained, and if there are four thinner thermoplastic foam sheets the result is accordingly per se a four-layer thermoplastic foam sheet.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: June 19, 2018
    Assignee: BASF SE
    Inventors: Dietrich Scherzer, Tim Diehlmann, Franz-Josef Dietzen, Carsten Sandner, Herbert Schall
  • Publication number: 20170369667
    Abstract: The invention relates to a molding composed of extruded foam, wherein at least one fiber (F) is present with a fiber region (FB2) within the molding and is surrounded by the extruded foam, while a fiber region (FB1) of the fiber (F) projects from a first side of the molding and a fiber region (FB3) of the fiber (F) projects from a second side of the molding, and the extruded foam is produced by an extrusion process comprising the following steps: I) providing a polymer melt in an extruder, II) introducing at least one blowing agent into the polymer melt provided in step I) to obtain a foamable polymer melt, III) extruding the foamable polymer melt obtained in step II) from the extruder through at least one die aperture into an area at lower pressure, with expansion of the foamable polymer melt to obtain an expanded foam, and IV) calibrating the expanded foam from step III) by conducting the expanded foam through a shaping tool to obtain the extruded foam.
    Type: Application
    Filed: December 15, 2015
    Publication date: December 28, 2017
    Inventors: Holger RUCKDÄSCHEL, Rene ARBTER, Robert STEIN, Daniela LONGO-SCHEDEL, Tim DIEHLMANN, Bangaru SAMPATH, Peter GUTMANN, Alexandre TERRENOIRE, Markus HARTENSTEIN, Andreas KIRGIS, Gregor DAUN, Marc Claude MARTIN, Peter MERKEL, Thomas KICIAK, Alessio MORINO
  • Publication number: 20170368761
    Abstract: The invention relates to a process for the production of at least two-layer thermoplastic sheets via thermal welding of at least one thinner thermoplastic sheet with density (D1) and of at least one second thinner thermoplastic sheet with density (D2), where the density (D1) of the first thinner thermoplastic sheet is smaller than the density (D2) of the second thinner thermoplastic sheet. The process introduces at least one first heating element and at least one second heating element along mutually offset planes between the two thinner thermoplastic sheets, where the surfaces of the thinner thermoplastic sheets do not touch the surfaces of the heating elements. The first heating element transfers a quantity of energy (E1) to the surface of the first thinner thermoplastic sheet, and the second heating element transfers a quantity of energy (E2) to the surface of the second thinner thermoplastic sheet, where the quantity of energy (E1) is smaller than the quantity of energy (E2).
    Type: Application
    Filed: December 17, 2015
    Publication date: December 28, 2017
    Inventors: ECKHARD NEUFELD, Carsten SANDNER, Tim DIEHLMANN, Franz-Josef DIETZEN, Dietrich SCHERZER
  • Publication number: 20160159001
    Abstract: The present invention relates to a process for the production of at least two-layer thermoplastic foam sheets via thermal welding of at least two thinner thermoplastic foam sheets. In the process of the invention, at least two heating elements are conducted on mutually offset planes between the surfaces to be welded of the thinner thermoplastic foam sheets, and the foam sheets here do not touch the heating elements. The number of layers of the thermoplastic foam sheet is per se a result of the number of thinner thermoplastic foam sheets that are thermally welded to one another. If by way of example three thinner thermoplastic foam sheets are thermally welded to one another, a three-layer thermoplastic foam sheet is per se obtained, and if there are four thinner thermoplastic foam sheets the result is accordingly per se a four-layer thermoplastic foam sheet.
    Type: Application
    Filed: July 17, 2014
    Publication date: June 9, 2016
    Inventors: Dietrich SCHERZER, Tim DIEHLMANN, Franz-Josef DIETZEN, Carsten SANDNER, Herbert SCHALL
  • Publication number: 20160023434
    Abstract: A process for the production of an at least two-layer thermoplastic foam sheet via symmetrical bonding, e.g., by thermal welding, of at least two thinner thermoplastic foam sheets to give the at least two-layer thermoplastic foam sheet. The invention further relates to thermoplastic foam sheets having at least two layers. The number of the layers of the thermoplastic foam sheet derives from the number of thin thermoplastic foam sheets that are thermally welded to one another.
    Type: Application
    Filed: March 26, 2015
    Publication date: January 28, 2016
    Inventors: Dietrich SCHERZER, Klaus HAHN, Christoph HAHN, Tim DIEHLMANN, Peter MERKEL, Franz-Josef DIETZEN, Carsten SANDNER, Cathrin SCHRÖDER, Maria-Kristin SOMMER