Patents by Inventor Timo J. Pfau

Timo J. Pfau has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9166628
    Abstract: An optical transport system is configured to use a modulation scheme in which a phase rotation applied to a sequence of PSK or QAM constellation symbols encoding a codeword of an FEC code produces a modified sequence of PSK or QAM constellation symbols encoding a bit-word that is not a valid codeword of that FEC code. Based on this property of the modulation scheme, an optical receiver may be configured to relatively accurately recover the absolute phase of the optical carrier wave of the received modulated optical signal by applying maximum likelihood sequence estimation processing to each portion of the signal carrying a valid codeword of the FEC code. For example, for a modulation scheme employing a 2n-PSK constellation, the optical receiver may be able to recover the absolute phase of the optical carrier wave with an accuracy that is better than 360/2n degrees.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 20, 2015
    Assignee: Alcatel Lucent
    Inventor: Timo J. Pfau
  • Publication number: 20150171895
    Abstract: An optical transport system is configured to use a modulation scheme in which a phase rotation applied to a sequence of PSK or QAM constellation symbols encoding a codeword of an FEC code produces a modified sequence of PSK or QAM constellation symbols encoding a bit-word that is not a valid codeword of that FEC code. Based on this property of the modulation scheme, an optical receiver may be configured to relatively accurately recover the absolute phase of the optical carrier wave of the received modulated optical signal by applying maximum likelihood sequence estimation processing to each portion of the signal carrying a valid codeword of the FEC code. For example, for a modulation scheme employing a 2n-PSK constellation, the optical receiver may be able to recover the absolute phase of the optical carrier wave with an accuracy that is better than 360/2n degrees.
    Type: Application
    Filed: December 13, 2013
    Publication date: June 18, 2015
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Timo J. Pfau
  • Patent number: 8983294
    Abstract: An optical transport system that transmits data using relatively short FEC-encoded data frames. The corresponding modulated optical signals are decoded at an optical receiver using frame-based maximum likelihood sequence estimation that relies on data redundancy present in each FEC-encoded data frame for the determination of its source bits. In some embodiments, the modulated optical signals carrying the FEC-encoded data frames are generated using a polarization-division-multiplexed constellation. The FEC-coding rate and frame length can be adjusted without changing the constellation, which advantageously enables the optical transport system to dynamically adapt its transmission format to the changing link conditions in a manner that results in better overall receiver sensitivity than that achieved with comparable bit-rate-adaptation methods that rely on a constellation change rather than on a change of the FEC-coding rate.
    Type: Grant
    Filed: June 29, 2012
    Date of Patent: March 17, 2015
    Assignee: Alcatel Lucent
    Inventors: Timo J. Pfau, Noriaki Kaneda, Brian S. Krongold
  • Patent number: 8903238
    Abstract: A system, e.g. for optical communication, includes an I-Q modulator and a transmission signal processor. The I-Q modulator is configured to modulate a first light source in response to first I and Q modulation signals. The transmission signal processor is configured to receive a data stream including data corresponding to a first data subchannel. The processor maps the data subchannel to an optical transmission subchannel and outputs the first I and Q modulation signals. The I and Q modulation signals modulate the light source to produce an optical transmission signal that includes wavelength components corresponding to the optical transmission subchannel.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: December 2, 2014
    Assignee: Alcatel Lucent
    Inventors: Timo J. Pfau, Noriaki Kaneda, Young-Kai Chen
  • Patent number: 8693888
    Abstract: Various embodiments of a 16-QAM (quadrature-amplitude-modulation) constellation having one or more subsets of its sixteen constellation points arranged within respective one or more relatively narrow circular bands. Each of the subsets includes constellation points of at least two different amplitudes and may have between about six and about ten constellation points. Each of the circular bands may have a width that is between about 3% and about 20% of the maximum amplitude in the constellation.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 8, 2014
    Assignee: Alcatel Lucent
    Inventor: Timo J. Pfau
  • Publication number: 20140072303
    Abstract: A system, e.g. for optical communication, includes an I-Q modulator and a transmission signal processor. The I-Q modulator is configured to modulate a first light source in response to first I and Q modulation signals. The transmission signal processor is configured to receive a data stream including data corresponding to a first data subchannel. The processor maps the data subchannel to an optical transmission subchannel and outputs the first I and Q modulation signals. The I and Q modulation signals modulate the light source to produce an optical transmission signal that includes wavelength components corresponding to the optical transmission subchannel.
    Type: Application
    Filed: September 10, 2012
    Publication date: March 13, 2014
    Applicant: Alcatel-Lucent USA, Inc.
    Inventors: Timo J. Pfau, Noriaki Kaneda, Young-Kai Chen
  • Publication number: 20140003813
    Abstract: An optical transport system that transmits data using relatively short FEC-encoded data frames. The corresponding modulated optical signals are decoded at an optical receiver using frame-based maximum likelihood sequence estimation that relies on data redundancy present in each FEC-encoded data frame for the determination of its source bits. In some embodiments, the modulated optical signals carrying the FEC-encoded data frames are generated using a polarization-division-multiplexed constellation. The FEC-coding rate and frame length can be adjusted without changing the constellation, which advantageously enables the optical transport system to dynamically adapt its transmission format to the changing link conditions in a manner that results in better overall receiver sensitivity than that achieved with comparable bit-rate-adaptation methods that rely on a constellation change rather than on a change of the FEC-coding rate.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 2, 2014
    Applicant: ALCATEL-LUCENT USA INC.
    Inventors: Timo J. Pfau, Noriaki Kaneda, Brian S. Krongold
  • Publication number: 20130177306
    Abstract: Various embodiments of a 16-QAM (quadrature-amplitude-modulation) constellation having one or more subsets of its sixteen constellation points arranged within respective one or more relatively narrow circular bands. Each of the subsets includes constellation points of at least two different amplitudes and may have between about six and about ten constellation points. Each of the circular bands may have a width that is between about 3% and about 20% of the maximum amplitude in the constellation.
    Type: Application
    Filed: January 10, 2012
    Publication date: July 11, 2013
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Timo J. Pfau
  • Patent number: 8301037
    Abstract: In one embodiment, a coherent optical receiver has an optical detector coupled to a digital processor. The optical detector mixes a received modulated optical signal with a local-oscillator signal to produce a digital measure of the modulated optical signal. The digital processor processes the digital measure using a primary carrier- and data-recovery (CDR) stage and one or more secondary CDR stages serially connected to one another. The processing performed in each secondary CDR stage is decision-directed and uses the symbol estimate generated by the preceding CDR stage to obtain a respective estimate of the carrier-phase offset and a respective symbol estimate. Since each subsequent CDR stage typically improves the accuracies of its estimates compared to those of the preceding CDR stage(s), the receiver has a lower bit-error rate than a receiver employing a single CDR stage.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: October 30, 2012
    Assignee: Alcatel Lucent
    Inventor: Timo J. Pfau
  • Publication number: 20110217043
    Abstract: In one embodiment, a coherent optical receiver has an optical detector coupled to a digital processor. The optical detector mixes a received modulated optical signal with a local-oscillator signal to produce a digital measure of the modulated optical signal. The digital processor processes the digital measure using a primary carrier- and data-recovery (CDR) stage and one or more secondary CDR stages serially connected to one another. The processing performed in each secondary CDR stage is decision-directed and uses the symbol estimate generated by the preceding CDR stage to obtain a respective estimate of the carrier-phase offset and a respective symbol estimate. Since each subsequent CDR stage typically improves the accuracies of its estimates compared to those of the preceding CDR stage(s), the receiver has a lower bit-error rate than a receiver employing a single CDR stage.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 8, 2011
    Applicant: ALCATEL-LUCENT USA INC.
    Inventor: Timo J. Pfau