Patents by Inventor Timothy A. Hoeman

Timothy A. Hoeman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10646326
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: May 12, 2020
    Assignee: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9943320
    Abstract: An apparatus for removal of a femoral implant may include a handle portion and a cutting blade opposite the handle portion. The cutting blade may include a cutting edge, wherein the cutting edge includes a non-linear shape to substantially match at least a portion of a profile of the femoral implant to be removed.
    Type: Grant
    Filed: June 10, 2014
    Date of Patent: April 17, 2018
    Assignee: Zimmer, Inc.
    Inventors: Gregg Klein, Harlan Levine, Timothy A. Hoeman, Ray Zubok, Robert G. Deluca, Natalia Fridshtand, Scott V. Cron
  • Patent number: 9918845
    Abstract: Augments systems and methods for attaching two or more augments to an underside (50) of a tibial baseplate (16) are disclosed. An augment system (100) can include a first augment (102) having a superior surface (106) and an inferior surface (108), the superior surface configured for attachment to the underside of the tibial baseplate. The augment system can include a second augment (104) having a superior surface (110) and an inferior surface (112), the superior surface configured for attachment to the inferior surface of the first augment. The first and second augments can be formed of different materials. One or more additional augments can be used with the first and second augments, and the augment system can be stacked on a resected surface of the tibia. In an example, the augment that directly contacts the resected surface of the tibia can be formed of a porous material, such as to facilitate bone growth.
    Type: Grant
    Filed: November 13, 2014
    Date of Patent: March 20, 2018
    Assignee: Zimmer, Inc.
    Inventors: Keith A. Roby, Timothy A. Hoeman, John Chernosky, Ray Zubok
  • Publication number: 20180008399
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Application
    Filed: September 20, 2017
    Publication date: January 11, 2018
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9827087
    Abstract: The present disclosure relates, in some aspects, to orthopedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: November 28, 2017
    Assignee: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9730743
    Abstract: A trochanter attachment device can include a plate for attachment to an inner portion of a greater trochanter of a femur, a collar for attaching the plate to a hip implant, and a fastener for securing the collar to a hip implant. The trochanter attachment device can include a groove or other feature for receiving a reinforcing material, such as a wire or a cable, such as to reinforce an attachment of the device to the greater trochanter and/or the hip implant. The trochanter attachment device can include an insert attachable to the plate and configured to attach the plate to the greater trochanter. All or a portion of the plate and/or the insert can include a porous material, such as to promote bone ingrowth of the greater trochanter.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: August 15, 2017
    Assignee: Zimmer, Inc.
    Inventors: Joseph R. Vargas, Timothy A. Hoeman, Jorge Montoya, Louis Kwong, Ray Zubok, Keith A. Roby, Jeff Dickerson, Anthony Lusardi
  • Patent number: 9579141
    Abstract: An orthopedic device holder and related system and method are disclosed. The orthopedic device holder can include a body member, a cannulated plunger, and a resilient member. The body member can include a longitudinal main body and an extension portion. The cannulated plunger can be slidably mounted inside the body member and movable between a first position and a second position. The plunger can be configured such that in the second position, a plunger distal end extends past a main body distal end, and in the first position, the plunger distal end assumes a more proximal position. The resilient member can be positioned adjacent a plunger proximal end and can be configured to urge the plunger towards the second position. The extension portion of the body member can project distally from the main body distal end and can include a locking member, which can be configured to fit into a mating recess of an orthopedic device.
    Type: Grant
    Filed: February 7, 2014
    Date of Patent: February 28, 2017
    Assignee: Zimmer, Inc.
    Inventors: John Chernosky, Ray Zubok, Timothy A. Hoeman, Imants Liepins
  • Patent number: 9566156
    Abstract: An orthopedic implant for filling voids in bones, and methods of using the same. The orthopedic implant comprises an open porous metal component, having pores for promoting bone regeneration, and a resorbable bone growth promoting component which is resorbed into new bone. The orthopedic implant and methods of the present disclosure provide structural support for the bone as well as osteoconductive and/or osteoinductive matrix for promoting bone re-growth within bone void. Advantageously, the orthopedic implants and methods disclosed herein are useful in filling critically sized bone voids.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 14, 2017
    Assignee: Zimmer, Inc.
    Inventors: Matthew E. Monaghan, Timothy A. Hoeman
  • Patent number: 9539095
    Abstract: An orthopaedic implant for filling a bone void and a method of using the same. The orthopaedic implant comprises an open porous metal portion and a bone cement portion. At a first surface region, the open porous metal portion facilitates bone and/or soft tissue ingrowth into the pores of the first surface region of the open porous metal. At a second surface region, the open porous metal facilitates reception of the bone cement into the pores of the second surface region of the open porous metal. The open porous metal portion of the orthopaedic implant may also be formed of a plurality of porous metal fragments aggregated together with the cement portion of the orthopaedic implant. Additionally, the orthopaedic implant may be pliable and thereby capable of being molded to the shape of a void in a bone.
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: January 10, 2017
    Assignee: Zimmer, Inc.
    Inventors: Matthew E. Monaghan, Timothy A. Hoeman
  • Patent number: 9517138
    Abstract: A tibial support structure includes a platform portion and a medullary portion that are monolithically formed as a single piece. The medullary and platform portions of the augment component are adapted to accommodate and mechanically attach to a tibial baseplate, and are individually shaped and sized to replace damaged bone stock both within the tibia, as well at the tibial proximal surface. The monolithic formation of the tibial support structure provides a strong and stable foundation for a tibial baseplate and facilitates restoration of the anatomic joint line, even where substantial resections of the proximal tibia have been made. The tibial support structure may be made of a bone-ingrowth material which facilitates preservation and rebuilding of the proximal tibia after implantation, while also preserving the restored joint line by allowing revision surgeries to be performed without removal of the tibial support structure.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: December 13, 2016
    Assignee: Zimmer, Inc.
    Inventors: Ray Zubok, Jorge Montoya, Timothy A. Hoeman, John Chernosky, Keith A. Roby
  • Publication number: 20160338712
    Abstract: Punch instruments (5) are provided in some embodiments for cutting tissue in a resected proximal tibia. Such instruments can include an elongate handle (10) and a cutting head (20) disposed at the distal end of the elongate handle (10). The cutting head (20) can include a first annular blade member (25) with a first leading cutting edge (29) that extends generally transversely to a longitudinal axis of the elongate handle (10). The cutting head (20) can include a second annular blade member (26) that is situated inwardly of the first annular blade member (25) and which includes a second leading cutting edge (30) that extends generally transversely to the longitudinal axis of the elongate handle (10).
    Type: Application
    Filed: January 20, 2015
    Publication date: November 24, 2016
    Inventors: John Chernosky, Ray Zubok, Timothy A. Hoeman, Imants Liepins, Keith A. Roby, Greg Stebbins, Sara Savoia
  • Publication number: 20160278925
    Abstract: Augments systems and methods for attaching two or more augments to an underside (50) of a tibial baseplate (16) are disclosed. An augment system (100) can include a first augment (102) having a superior surface (106) and an inferior surface (108), the superior surface configured for attachment to the underside of the tibial baseplate. The augment system can include a second augment (104) having a superior surface (110) and an inferior surface (112), the superior surface configured for attachment to the inferior surface of the first augment. The first and second augments can be formed of different materials. One or more additional augments can be used with the first and second augments, and the augment system can be stacked on a resected surface of the tibia. In an example, the augment that directly contacts the resected surface of the tibia can be formed of a porous material, such as to facilitate bone growth.
    Type: Application
    Filed: November 13, 2014
    Publication date: September 29, 2016
    Inventors: Keith A. Roby, Timothy A Hoeman, John Chernosky, Ray Zubok
  • Publication number: 20150257871
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Application
    Filed: June 1, 2015
    Publication date: September 17, 2015
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Publication number: 20150250508
    Abstract: A trochanter attachment device can include a plate for attachment to an inner portion of a greater trochanter of a femur, a collar for attaching the plate to a hip implant, and a fastener for securing the collar to a hip implant. The trochanter attachment device can include a groove or other feature for receiving a reinforcing material, such as a wire or a cable, such as to reinforce an attachment of the device to the greater trochanter and/or the hip implant. The trochanter attachment device can include an insert attachable to the plate and configured to attach the plate to the greater trochanter. All or a portion of the plate and/or the insert can include a porous material, such as to promote bone ingrowth of the greater trochanter.
    Type: Application
    Filed: May 22, 2015
    Publication date: September 10, 2015
    Inventors: Joseph R. Vargas, Timothy A. Hoeman, Jorge Montoya, Louis Kwong, Ray Zubok, Keith A. Roby, Jeff Dickerson, Anthony Lusardi
  • Patent number: 9055977
    Abstract: The present disclosure relates, in some aspects, to orthopaedic implants for securing soft tissue to bone and methods for using the same. One particular implant comprises a first exposed porous surface region, having pores for promoting bone ingrowth, and a second exposed porous surface, having pores for promoting soft tissue ingrowth. At least some of the pores of the first exposed porous surface region may be seeded with osteocytic factors and at least some of the pores of the second exposed porous surface region may be seeded with fibrocytic factors. Such orthopaedic implants can advantageously facilitate regeneration of the soft tissue to bone interface.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: June 16, 2015
    Assignee: Zimmer, Inc.
    Inventors: Tao Jiang, Jian Q. Yao, Hali Wang, Timothy A. Hoeman, Ray Zubok, John Chernosky, Keith A. Roby
  • Patent number: 9050150
    Abstract: A trochanter attachment device can include a plate for attachment to an inner portion of a greater trochanter of a femur, a collar for attaching the plate to a hip implant, and a fastener for securing the collar to a hip implant. The trochanter attachment device can include a groove or other feature for receiving a reinforcing material, such as a wire or a cable, such as to reinforce an attachment of the device to the greater trochanter and/or the hip implant. The trochanter attachment device can include an insert attachable to the plate and configured to attach the plate to the greater trochanter. All or a portion of the plate and/or the insert can include a porous material, such as to promote bone ingrowth of the greater trochanter.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: June 9, 2015
    Assignee: Zimmer, Inc.
    Inventors: Joseph R. Vargas, Timothy A. Hoeman, Jorge Montoya, Louis Kwong, Ray Zubok, Keith A. Roby, Jeff Dickerson, Anthony Lusardi
  • Publication number: 20150081030
    Abstract: A tibial support structure includes a platform portion and a medullary portion that are monolithically formed as a single piece. The medullary and platform portions of the augment component are adapted to accommodate and mechanically attach to a tibial baseplate, and are individually shaped and sized to replace damaged bone stock both within the tibia, as well at the tibial proximal surface. The monolithic formation of the tibial support structure provides a strong and stable foundation for a tibial baseplate and facilitates restoration of the anatomic joint line, even where substantial resections of the proximal tibia have been made. The tibial support structure may be made of a bone-ingrowth material which facilitates preservation and rebuilding of the proximal tibia after implantation, while also preserving the restored joint line by allowing revision surgeries to be performed without removal of the tibial support structure.
    Type: Application
    Filed: November 21, 2014
    Publication date: March 19, 2015
    Inventors: Ray Zubok, Jorge Montoya, Timothy A. Hoeman, John Chernosky, Keith A. Roby
  • Publication number: 20150081028
    Abstract: A bone augment adaptor is configured to be inseparably coupled to a bone augment. A first end of the adaptor is configured to be connected to an epiphyseal replacement portion of a modular joint replacement prosthesis. A second end of the adaptor may be configured to be connected to a diaphyseal anchoring portion of the prosthesis.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Inventors: Ray Zubok, Keith A. Roby, Timothy A. Hoeman, Imants Liepins, John Chernosky
  • Publication number: 20150032222
    Abstract: An orthopaedic implant for filling a bone void and a method of using the same. The orthopaedic implant comprises an open porous metal portion and a bone cement portion. At a first surface region, the open porous metal portion facilitates hone and/or soft tissue ingrowth into the pores of the first surface region of the open porous metal. At a second surface region, the open porous metal facilitates reception of the bone cement into the pores of the second surface region of the open porous metal. The open porous metal portion of the orthopaedic implant may also be formed of a plurality of porous metal fragments aggregated together with the cement portion of the orthopaedic implant. Additionally, the orthopaedic implant may be pliable and thereby capable of being molded to the shape of a void in a bone.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Inventors: Matthew E. Monaghan, Timothy A. Hoeman
  • Publication number: 20140371750
    Abstract: An apparatus for removal of a femoral implant may include a handle portion and a cutting blade opposite the handle portion. The cutting blade may include a cutting edge, wherein the cutting edge includes a non-linear shape to substantially match at least a portion of a profile of the femoral implant to be removed.
    Type: Application
    Filed: June 10, 2014
    Publication date: December 18, 2014
    Inventors: Gregg Klein, Harlan Levine, Timothy A. Hoeman, Ray Zubok, Robert G. Deluca, Natalia Fridshtand, Scott V. Cron