Patents by Inventor Timothy Antaya

Timothy Antaya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11116996
    Abstract: A high-intensity external ion injector can includes (a) an ion source defining a plasma chamber and including an aperture through which ions can escape the plasma chamber, (b) a microwave source configured to generate microwave radiation and direct the microwave radiation into the plasma chamber, (c) a gas source filled with a plasma-forming gas and configured to supply the plasma-forming gas to the plasma chamber, (d) a voltage source configured to apply a voltage to the plasma chamber, (e) an einzel triplet lens, (f) an ion focus positioned and configured to focus an ion beam exiting the aperture of the ion source through the einzel triplet lens, and (g) a periodic focusing structure positioned and configured to receive an ion beam exiting the einzel triplet lens.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: September 14, 2021
    Assignee: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Publication number: 20200404772
    Abstract: A compact rare-earth superconducting cyclotron includes a magnetic yoke, a pair of superconducting coils, and a pair of rare-earth poles. The magnetic yoke defines a chamber contained within the magnetic yoke. The superconducting coils are contained in the chamber defined in the magnetic yoke and are positioned on opposite sides of a median acceleration plane in the chamber. Each rare-earth pole includes a rare-earth metal and is contained in the chamber defined in the magnetic yoke on opposite sides of the median acceleration plane. Each of the rare-earth poles also extends inward toward a central axis from one of the superconducting coils, is physically separated from the magnetic yoke, and is separated by at least 5 cm from the other rare-earth pole.
    Type: Application
    Filed: June 19, 2020
    Publication date: December 24, 2020
    Applicant: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Publication number: 20200338365
    Abstract: A high-intensity external ion injector can includes (a) an ion source defining a plasma chamber and including an aperture through which ions can escape the plasma chamber, (b) a microwave source configured to generate microwave radiation and direct the microwave radiation into the plasma chamber, (c) a gas source filled with a plasma-forming gas and configured to supply the plasma-forming gas to the plasma chamber, (d) a voltage source configured to apply a voltage to the plasma chamber, (e) an einzel triplet lens, (f) an ion focus positioned and configured to focus an ion beam exiting the aperture of the ion source through the einzel triplet lens, and (g) a periodic focusing structure positioned and configured to receive an ion beam exiting the einzel triplet lens.
    Type: Application
    Filed: July 6, 2020
    Publication date: October 29, 2020
    Applicant: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Patent number: 10702709
    Abstract: A cryogenic magnet structure includes at least two superconducting coils that are substantially symmetric about a central axis and on opposite sides of a median plane. At least one cryostat contains the superconducting coils; and a magnetic yoke surrounds the superconducting coils and contains at least a portion of a chamber, wherein the median plane extends through the chamber. At least one integral maintenance boot assembly is in thermal contact with the superconducting coils and is configured to preserve a sealed vacuum in the cryostat; and a cryogenic refrigerator is in thermal contact with the maintenance boot assembly and is configured to cool the superconducting coils below their critical superconducting temperatures and is configured for removal from thermal contact with the integral maintenance boot assembly without breaking the sealed vacuum in the cryostat.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: July 7, 2020
    Assignee: Antaya Science & Technology
    Inventors: Timothy A. Antaya, Paul Ruggiero
  • Publication number: 20200164229
    Abstract: A cryogenic magnet structure includes at least two superconducting coils that are substantially symmetric about a central axis and on opposite sides of a median plane. At least one cryostat contains the superconducting coils; and a magnetic yoke surrounds the superconducting coils and contains at least a portion of a chamber, wherein the median plane extends through the chamber. At least one integral maintenance boot assembly is in thermal contact with the superconducting coils and is configured to preserve a sealed vacuum in the cryostat; and a cryogenic refrigerator is in thermal contact with the maintenance boot assembly and is configured to cool the superconducting coils below their critical superconducting temperatures and is configured for removal from thermal contact with the integral maintenance boot assembly without breaking the sealed vacuum in the cryostat.
    Type: Application
    Filed: June 18, 2019
    Publication date: May 28, 2020
    Applicant: Antaya Science & Technology
    Inventors: Timothy A. Antaya, Paul Ruggiero
  • Patent number: 10363435
    Abstract: A cryogenic magnet structure includes at least two superconducting coils, a magnetic yoke, and first and second cryostats. The superconducting coils are substantially symmetric about a central axis, wherein the superconducting coils are on opposite sides of a median plane. The magnetic yoke surrounds the superconducting coils and contains at least a portion of a chamber, wherein the median plane extends through the chamber. The first cryostat contains a first of the superconducting coils, and the second cryostat contains a second of the superconducting coils. The second cryostat is distinct from the first cryostat, and the first and second cryostats are on opposite sides of the median plane in the chamber.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 30, 2019
    Assignee: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Publication number: 20180161598
    Abstract: A cryogenic magnet structure includes at least two superconducting coils, a magnetic yoke, and first and second cryostats. The superconducting coils are substantially symmetric about a central axis, wherein the superconducting coils are on opposite sides of a median plane. The magnetic yoke surrounds the superconducting coils and contains at least a portion of a chamber, wherein the median plane extends through the chamber. The first cryostat contains a first of the superconducting coils, and the second cryostat contains a second of the superconducting coils. The second cryostat is distinct from the first cryostat, and the first and second cryostats are on opposite sides of the median plane in the chamber.
    Type: Application
    Filed: January 29, 2018
    Publication date: June 14, 2018
    Applicant: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Patent number: 9895552
    Abstract: An isochronous cyclotron includes at least two superconducting coils, a magnetic yoke surrounding the coils and containing at least a portion of a beam chamber, a plurality of superconducting flutter coils on each side of the median acceleration plane, a non-magnetic reinforcement structure filling the valleys between the superconducting flutter coils so as to maintain the positioning of the superconducting flutter coils, internal reinforcement structures mounted inside the superconducting flutter coils, and a cryogenic refrigerator thermally coupled with the superconducting coils and with the magnetic yoke.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: February 20, 2018
    Assignee: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Publication number: 20160353562
    Abstract: An isochronous cyclotron includes at least two superconducting coils, a magnetic yoke surrounding the coils and containing at least a portion of a beam chamber, a plurality of superconducting flutter coils on each side of the median acceleration plane, a non-magnetic reinforcement structure filling the valleys between the superconducting flutter coils so as to maintain the positioning of the superconducting flutter coils, internal reinforcement structures mounted inside the superconducting flutter coils, and a cryogenic refrigerator thermally coupled with the superconducting coils and with the magnetic yoke.
    Type: Application
    Filed: May 26, 2016
    Publication date: December 1, 2016
    Applicant: Antaya Science & Technology
    Inventor: Timothy A. Antaya
  • Patent number: 8975836
    Abstract: A cyclotron for ion acceleration is magnetically shielded during ion acceleration by passing electrical current in the same direction through both the first and second superconducting primary coils. A first magnetic-field-shielding coil is on the same side of the mid plane as the first superconducting primary coil, while a second magnetic-field-shielding coil is on the same side of the midplane as the second superconducting primary coil and beyond the outer radius of the second superconducting primary coil. Electrical current is also passed through the magnetic-field-shielding coils in a direction opposite to the direction in which electrical current is passed through the superconducting primary coils and generates a canceling magnetic field that reduces the magnetic field generated at radii from the central axis beyond the magnetic-field-shielding coils.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 10, 2015
    Assignee: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Publication number: 20140087953
    Abstract: A cyclotron for ion acceleration is magnetically shielded during ion acceleration by passing electrical current in the same direction through both the first and second superconducting primary coils. A first magnetic-field-shielding coil is on the same side of the mid plane as the first superconducting primary coil, while a second magnetic-field-shielding coil is on the same side of the midplane as the second superconducting primary coil and beyond the outer radius of the second superconducting primary coil. Electrical current is also passed through the magnetic-field-shielding coils in a direction opposite to the direction in which electrical current is passed through the superconducting primary coils and generates a canceling magnetic field that reduces the magnetic field generated at radii from the central axis beyond the magnetic-field-shielding coils.
    Type: Application
    Filed: March 14, 2013
    Publication date: March 27, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Publication number: 20140028220
    Abstract: The invention specifies the use of feedback in the radio frequency (RF) drive for a synchrocyclotron, controlling the phase and/or amplitude of the accelerating field as a means to assure optimal acceleration of the beam, to increase the average beam current and to alter the beam orbit in order to allow appropriate extraction as the beam energy is varied. The effect of space charge is reduced by rapid acceleration and extraction of the beam, and the repetition rate of the pulses can be increased. Several means are presented to monitor the phase of the beam in synchrocyclotrons and to adjust the phase and amplitude of the RF to optimize the acceleration of the beam and to adjust the extraction and injection of the beam. Also, the use of a pulsed ion source that matches the acceptance window of the synchrocyclotron is described.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 30, 2014
    Inventors: Leslie Bromberg, Joseph V. Minervini, Peisi Le, Alexey L. Radovinsky, Phillip C. Michael, Timothy A. Antaya
  • Patent number: 8614612
    Abstract: A superconducting coil includes (a) a plurality of windings of a coil comprising high-temperature superconductors and (b) an electrically conductive channel in which the high-temperature superconductors are mounted. The high-temperature superconductors can comprise at least one of the following: Ba2Sr2Ca1Cu2O8 (2212), Ba2Sr2Ca2Cu3O10 (2223), and YBa2Cu3O7-x (123) superconductor.
    Type: Grant
    Filed: January 17, 2012
    Date of Patent: December 24, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy A. Antaya, Joel Henry Schultz
  • Patent number: 8581525
    Abstract: A plurality of magnetic extraction bumps are incorporated into a cyclotron that further includes (a) a pair of magnetic coils encircling a central axis and positioned on opposite sides of a median acceleration plane and (b) a magnetic yoke encircling the central axis and including a return yoke that crosses the median acceleration plane and a first and second pole on opposite sides of the median acceleration plane. The magnetic extraction bumps extend in series radially from the central axis on opposite sides of the median acceleration plane and can be used to extract an orbiting accelerated ion from the cyclotron.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: November 12, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy A. Antaya, Jun Feng, Alexey Radovinsky, Stanislaw P. Sobczynski
  • Patent number: 8575563
    Abstract: A gantry for administering proton beam therapy with improvements which reduce the size, weight, costs and radiation beam loss associated with proton beam therapy systems currently commercially available. The gantry utilizes achromatic superconducting multi-function electromagnet systems wherein the magnets can include dipoles and quadrupoles. The achromatic properties of the rampable magnet systems allow for ease of transmission of the beam whose energy is rapidly changed through a large range of different energies without changing of the strength of the magnetic fields or dipole settings. The magnets may be made with either low or high temperature superconductors. The gantry design further integrates beam scanning but keeps the gantry isocentric. A much greater fraction of the beam can be transmitted through the gantry than with current art, thereby reducing radiation shielding requirements and the demand put on the accelerator to produce large quantities of proton beam.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 5, 2013
    Assignee: ProCure Treatment Centers, Inc.
    Inventors: John M. Cameron, Vladimir Anferov, Timothy A. Antaya
  • Patent number: 8558485
    Abstract: A compact, cold, superconducting isochronous cyclotron can include at least two superconducting coils on opposite sides of a median acceleration plane. A magnetic yoke surrounds the coils and a portion of a beam chamber in which ions are accelerated. A cryogenic refrigerator is thermally coupled both with the superconducting coils and with the magnetic yoke. The superconducting isochronous cyclotron also includes sector pole tips that provide strong focusing; the sector pole tips can have a spiral configuration and can be formed of a rare earth magnet. The sector pole tips can also be separated from the rest of the yoke by a non-magnetic material. In other embodiments, the sector pole tips can include a superconducting material. The spiral pole tips can also include cut-outs on a back side of the sector pole tips remote from the median acceleration plane.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: October 15, 2013
    Assignee: Ionetix Corporation
    Inventor: Timothy A. Antaya
  • Publication number: 20130249443
    Abstract: A plurality of magnetic extraction bumps are incorporated into a cyclotron that further includes (a) a pair of magnetic coils encircling a central axis and positioned on opposite sides of a median acceleration plane and (b) a magnetic yoke encircling the central axis and including a return yoke that crosses the median acceleration plane and a first and second pole on opposite sides of the median acceleration plane. The magnetic extraction bumps extend in series radially from the central axis on opposite sides of the median acceleration plane and can be used to extract an orbiting accelerated ion from the cyclotron.
    Type: Application
    Filed: March 23, 2012
    Publication date: September 26, 2013
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Timothy A. Antaya, Jun Feng, Alexey Radovinsky, Stanislaw P. Sobczynski
  • Patent number: 8525447
    Abstract: A compact, cold, weak-focusing superconducting cyclotron can include at least two superconducting coils on opposite sides of a median acceleration plane. A magnetic yoke surrounds the coils and contains an acceleration chamber. The magnetic yoke is in thermal contact with the superconducting coils, and the median acceleration plane extends through the acceleration chamber. A cryogenic refrigerator is thermally coupled both with the superconducting coils and with the magnetic yoke.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: September 3, 2013
    Assignee: Massachusetts Institute of Technology
    Inventor: Timothy A. Antaya
  • Publication number: 20130009571
    Abstract: A compact, cold, superconducting isochronous cyclotron can include at least two superconducting coils on opposite sides of a median acceleration plane. A magnetic yoke surrounds the coils and a portion of a beam chamber in which ions are accelerated. A cryogenic refrigerator is thermally coupled both with the superconducting coils and with the magnetic yoke. The superconducting isochronous cyclotron also includes sector pole tips that provide strong focusing; the sector pole tips can have a spiral configuration and can be formed of a rare earth magnet. The sector pole tips can also be separated from the rest of the yoke by a non-magnetic material. In other embodiments, the sector pole tips can include a superconducting material. The spiral pole tips can also include cut-outs on a back side of the sector pole tips remote from the median acceleration plane.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Applicant: IONETIX CORPORATION
    Inventor: Timothy A. Antaya
  • Publication number: 20120142538
    Abstract: A superconducting coil includes (a) a plurality of windings of a coil comprising high-temperature superconductors and (b) an electrically conductive channel in which the high-temperature superconductors are mounted. The high-temperature superconductors can comprise at least one of the following: Ba2Sr2Ca1Cu2O8 (2212), Ba2Sr2Ca2Cu3O10 (2223), and YBa2Cu3O7-x (123) superconductor.
    Type: Application
    Filed: January 17, 2012
    Publication date: June 7, 2012
    Applicant: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Timothy A. Antaya, Joel Henry Schultz