Patents by Inventor Timothy Gallagher

Timothy Gallagher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11605754
    Abstract: A transfer method includes providing a first light emitting diode on a first substrate, performing a partial laser liftoff of the first light emitting diode from the first substrate, laser bonding the first light emitting diode to the backplane after performing the partial laser liftoff, and separating the first substrate from the first light emitting diode after the laser bonding.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: March 14, 2023
    Assignee: NANOSYS, INC.
    Inventors: Timothy Gallagher, Anusha Pokhriyal
  • Publication number: 20230024764
    Abstract: A system and method for a marine wrapper including a substrate, the substrate having an inner surface and an outer surface; and a coating fixedly adhered to the outer surface of the substrate, the coating including a bio-enhancing material to encourage marine growth on the outer surface of the substrate.
    Type: Application
    Filed: July 25, 2022
    Publication date: January 26, 2023
    Inventors: Timothy A. Gallagher, Anthony E.J. Strange
  • Patent number: 11044704
    Abstract: A WiFi access point (AP) includes a receive radio frequency (RF) front end and a baseband processor that controls operation of the receive RF front end. The RF front end captures signals over a wide spectrum that includes a plurality of WiFi frequency bands (2.4 GHz and 5 GHz) and channelizes one or more WiFi channels from the captured signals. The baseband processor combines a plurality of blocks of WiFi channels to create one or more aggregated WiFi channels. The receive RF front end may be integrated on a first integrated circuit and the baseband processor may be integrated on a second integrated circuit. The first and second integrated circuits may be integrated on a single package. The RF front end and the baseband processor may be integrated on a single integrated circuit. The WiFi access point comprises a routing module that is communicatively coupled to the baseband processor.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: June 22, 2021
    Assignee: Maxlinear, Inc.
    Inventors: Timothy Gallagher, Curtis Ling, Alan Trerise, Kishore Seendripu
  • Publication number: 20210184072
    Abstract: A transfer method includes providing a first light emitting diode on a first substrate, performing a partial laser liftoff of the first light emitting diode from the first substrate, laser bonding the first light emitting diode to the backplane after performing the partial laser liftoff, and separating the first substrate from the first light emitting diode after the laser bonding.
    Type: Application
    Filed: December 9, 2020
    Publication date: June 17, 2021
    Inventors: Timothy GALLAGHER, Anusha POKHRIYAL
  • Publication number: 20210074775
    Abstract: A light emitting device includes a first light emitting diode configured to emit light at a first peak wavelength, a second light emitting diode configured to emit light at a second peak wavelength that is different from the first peak wavelength, and a third light emitting diode including, from bottom to top, a lower electrode, an organic light emitting material portion, and an upper electrode, where the third light emitting diode is configured to emit light at a third peak wavelength that is different from the first and second peak wavelengths. A pattern definition layer which includes an opaque material covers at least a portion of the organic light emitting material portion and includes an opening overlying the organic light emitting material portion.
    Type: Application
    Filed: September 11, 2019
    Publication date: March 11, 2021
    Inventors: Timothy GALLAGHER, Brian KIM, Fariba DANESH
  • Patent number: 10886615
    Abstract: Aspects of methods and systems for interleaved multi-band antenna arrays are provided. An array based communications system may comprise element processors and antenna elements. Each element processor of a first plurality of element processors may communicate in a first communication band via an antenna element in a first antenna array. Each element processor of a second plurality of element processors may communicate in a second communication band via an antenna element in a second antenna array. One or more antenna elements of the second antenna array may be positioned between antenna elements of the first antenna array.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: January 5, 2021
    Assignee: MaxLinear, Inc.
    Inventors: Timothy Gallagher, Curtis Ling
  • Patent number: 10862702
    Abstract: Methods and systems are provided for power control in communications devices. Bonding of channels in communication devices may be dynamically adjusted, such as responsive to requests for bandwidth adjustment. For example, bonded channel configurations may be adjusted based on power, such as to single channel configurations (or to channel configurations with small number of channels, such as relative to current configurations) for low power operations. Components (or functions thereof) used in conjunction with receiving and/or processing bonded channels may be dynamically adjusted. Such dynamic adjustments may be performed, for example, such as to maintain required synchronization and system information to facilitate rapid data transfer resumption upon demand.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: December 8, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10714464
    Abstract: Selective transfer of dies including semiconductor devices to a target substrate can be performed employing local laser irradiation. Coining of at least one set of solder material portions can be employed to provide a planar surface-to-surface contact and to facilitate bonding of adjoining pairs of bond structures. Laser irradiation on the solder material portions can be employed to sequentially bond selected pairs of mated bonding structures, while preventing bonding of devices not to be transferred to the target substrate. Additional laser irradiation can be employed to selectively detach bonded devices, while not detaching devices that are not bonded to the target substrate. The transferred devices can be pressed against the target substrate during a second reflow process so that the top surfaces of the transferred devices can be coplanar. Wetting layers of different sizes can be employed to provide a trapezoidal vertical cross-sectional profile for reflowed solder material portions.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: July 14, 2020
    Assignee: GLO AB
    Inventors: Anusha Pokhriyal, Sharon N. Farrens, Timothy Gallagher
  • Patent number: 10707190
    Abstract: A backplane can have a non-planar top surface. Insulating material portions including planar top surface regions located within a same horizontal plane are formed over the backplane. A two-dimensional array of metal plate clusters is formed over the insulating material portions. Each of the metal plate clusters includes a plurality of metal plates. Each metal plate includes a horizontal metal plate portion overlying a planar top surface region and a connection metal portion connected to a respective metal interconnect structure in the backplane. A two-dimensional array of light emitting device clusters is bonded to the backplane through respective bonding structures. Each light emitting device cluster includes a plurality of light emitting devices overlying a respective metal plate cluster.
    Type: Grant
    Filed: April 10, 2018
    Date of Patent: July 7, 2020
    Assignee: GLO AB
    Inventors: Tsun Lau, Fariba Danesh, Timothy Gallagher, Anusha Pokhriyal
  • Publication number: 20200177951
    Abstract: Methods and systems for providing a home cable network may comprise, for example, in a premises-based wired network (network), receiving by a root node network controller (NC), signals that conform to first protocols, where the signals may be received from sources external to the premises. The received signals may be bridged to conform to a second communications protocol and communicated to one or more networked devices comprising a television set top box downstream from the root node device where, for example, only signals conforming to the second communications protocol may be communicated. The first protocol signals may comprise data over cable service interface specification (DOCSIS), cable television, satellite television, fiber-to-the-home, and/or digital subscriber (DSL) signals. The second communications protocol may, for example, comprise a multimedia over cable alliance (MoCA) standard.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Curtis Ling, Timothy Gallagher
  • Publication number: 20200178126
    Abstract: Methods and systems for providing reduced bandwidth acquisition latency may comprise communicating a reservation request for bandwidth allocation for devices operating under a wired network protocol, where the reservation request may be sent by wired network devices via a wireless network protocol over a wireless network. Bandwidth may be allocated in the wired network for the requesting devices by a network controller. Data may be communicated with the requesting devices via the wired network. The wired network communication protocol may comprise a multimedia over cable alliance (MoCA) standard. The wireless protocol may comprise an IEEE 802.11x standard, a Bluetooth standard, and/or any non-public network protocol. The communication of the reservation request via the wireless protocol may decrease a latency of the wired network. A medium access plan (MAP) may be generated by the network controller based on the reservation request and may comprise a bandwidth allocation for the requesting devices.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventor: Timothy Gallagher
  • Patent number: 10658763
    Abstract: An array based communications system may comprise a plurality of element processors. Each element processor may comprise a combining circuit, a crest factor circuit, and a phase shifter circuit. The combining circuit may produce a weighted sum of a plurality of digital datastreams. The crest factor circuit may be operable to determine whether the weighted sum has a power above or below a power threshold. If the power is above the power threshold, the crest factor circuit is operable to reduce the power. If the power is below the power threshold, the crest factor circuit is operable to increase the power. The phase shifter circuit may introduce a phase shift to out-of-band components of the weighted sum according to the power increase or the power decrease by the crest factor circuit.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: May 19, 2020
    Assignee: Maxlinear, Inc.
    Inventors: Timothy Gallagher, Curtis Ling
  • Patent number: 10644733
    Abstract: Methods and systems for crest factor reduction may comprise generating an original waveform, generating a distortion signal by reducing a crest factor of the original waveform, generating an error signal by subtracting out the original waveform from the distortion signal, and generating a conditioned waveform by adding the error signal to the original waveform. The crest factor of the original waveform may be reduced based on spectral mask requirements. The crest factor of the original waveform may be reduced using a limiter. The power amplifier may comprise a programmable gain amplifier (PGA). The distortion signal may be generated based on a PGA model and/or a predistortion model. A signal from an output of the PA may be fed back to the PGA model. The PGA model may be dynamically configured. The crest factor of the original waveform may be reduced in an analog domain and/or a digital domain.
    Type: Grant
    Filed: September 20, 2018
    Date of Patent: May 5, 2020
    Assignee: MAXLINEAR, INC.
    Inventors: Sridhar Ramesh, Timothy Gallagher, Shantha Murthy Prem Swaroop, Ali Shahed hagh ghadam
  • Publication number: 20200120468
    Abstract: A wireless communication device (WCD) establishes an ad-hoc communication link with a second WCD within operating range. A replica of at least a portion of a display of the first WCD may be shared with the second WCD utilizing wireless broadband signals that are communicated via the established one or more ad-hoc communication links. The first WCD and the second WCD are operable to communicate the wireless broadband signals at a power level that is below a spurious emissions mask. The transmitted wireless broadband signals are spread so they occupy a designated frequency spectrum band. The shared replica of at least a portion of the display of the first WCD includes one or more applications, text, video and/or data content. A user of the first WCD may interact with content that is displayed on a display of the second WCD and vice-versa.
    Type: Application
    Filed: April 23, 2019
    Publication date: April 16, 2020
    Inventors: Curtis Ling, Timothy Gallagher
  • Publication number: 20200073831
    Abstract: A first device of a Multimedia Over Coax Alliance (MoCA) network may communicate with a second device of the MoCA network to control power-save operation of the second MoCA device. The first device may control the power-save operation of the second MoCA device based on an amount of data stored in a buffer, wherein the data stored in the buffer is destined for the second device. The buffer may be in a third device which sends the data to the second device, and/or the buffer may be in the first device. The first device may be operable to buffer data destined for the second device while the second device is in a power-saving state.
    Type: Application
    Filed: June 18, 2019
    Publication date: March 5, 2020
    Inventors: Timothy Gallagher, Glenn DeLucio, Curtis Ling
  • Patent number: 10581585
    Abstract: Methods and systems for cross-protocol time synchronization may comprise, for example, in a premises-based network, receiving a signal that conforms to a data over cable service interface specification (DOCSIS) communications protocol. A global time of day (GTOD) clock may be extracted from the received signal. Communication on the premises-based network in accordance with a multimedia over cable alliance (MoCA) communications protocol may be synchronized based at least in part on the extracted GTOD clock. Communication in a third communications protocol may be synchronized, wherein the third communications protocol may include a home phoneline networking alliance (HPNA) standard, an IEEE 802.11x standard, and a non-public wireless network protocol. The extracted GTOD clock may comprise a GPS clock, GLONASS clock, and a Galileo clock. A second signal for extracting a GTOD may be received, such as a satellite signal, and may conform to a low Earth orbit satellite signal protocol.
    Type: Grant
    Filed: August 11, 2014
    Date of Patent: March 3, 2020
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10560251
    Abstract: A network device may comprise one or more circuits including a clock signal generator, an ADC, and a processor. The ADC may digitize a received signal across a range of frequencies that encompasses a first band of frequencies used for a first network and a second band of frequencies used for a second network. A sampling frequency of the ADC may be determined by a frequency of a clock signal output by the clock signal generator. The processor may determine whether the first network is active and whether the second network is active. The processor may configure the clock generator such that, when both of the first network and the second network are active, the clock signal is set to a first frequency, and when the first network is active and the second network is inactive, the clock signal is set to a second frequency.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: February 11, 2020
    Assignee: Maxlinear, Inc.
    Inventors: Curtis Ling, Timothy Gallagher, Sridhar Ramesh
  • Publication number: 20200021469
    Abstract: Systems and methods are provided for dynamic calibration of pre-distortion modification in transmitters. The pre-distortion modification may be applied during processing of an input signal for transmission, and feedback data, relating to the transmitter and/or processing performed after application of the pre-distortion modification in the transmitter, may be obtained. Adjustments to the pre-distortion modification may be determined based on the feedback data, and the adjustments to the pre-distortion modification may be applied in loop-back manner, thus enabling adjustment of pre-distortion modification dynamically based on real-time and current data. The pre-distortion modification may comprise modifying one or more signal characteristics, such as phase, frequency, and/or amplitude. Determining and/or applying the adjustments to the pre-distortion modification may be done periodically, based on one or more particular events, or conditionally.
    Type: Application
    Filed: September 26, 2019
    Publication date: January 16, 2020
    Inventors: Sridhar Ramesh, Timothy Gallagher, Ali Shahed hagh ghadam
  • Publication number: 20200007307
    Abstract: Methods and systems for cross-protocol time synchronization may comprise, for example, in a premises-based network, receiving a signal that conforms to a data over cable service interface specification (DOCSIS) communications protocol. A global time of day (GTOD) clock may be extracted from the received signal. Communication on the premises-based network in accordance with a multimedia over cable alliance (MoCA) communications protocol may be synchronized based at least in part on the extracted GTOD clock. Communication in a third communications protocol may be synchronized, wherein the third communications protocol may include a home phoneline networking alliance (HPNA) standard, an IEEE 802.11x standard, and a non-public wireless network protocol. The extracted GTOD clock may comprise a GPS clock, GLONASS clock, and a Galileo clock. A second signal for extracting a GTOD may be received, such as a satellite signal, and may conform to a low Earth orbit satellite signal protocol.
    Type: Application
    Filed: August 11, 2014
    Publication date: January 2, 2020
    Inventors: Curtis Ling, Timothy Gallagher
  • Patent number: 10454653
    Abstract: Methods and systems for a mixed-mode MoCA network, substantially as illustrated by and/or described in connection with at least one of the figures, as set forth more completely in the claims. For example and without limitation, various aspects of the present disclosure provide methods and systems for controlling communication bandwidth allocation in a mixed-mode mixed-band shared cable network.
    Type: Grant
    Filed: June 6, 2018
    Date of Patent: October 22, 2019
    Assignee: Maxlinear, Inc.
    Inventor: Timothy Gallagher