Patents by Inventor Timothy J. Kulage

Timothy J. Kulage has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9932790
    Abstract: A casing cutting tool, to be disposed downhole in a casing string on a drillstring, for the cutting and/or milling of casing strings. The tool has a main body with a plurality of rotatable blades which can rotate between a first retracted position to a second position substantially at right angles to the main body. In this second position, cutting surfaces on the blades engage the casing wall, and rotation of the tool results in cutting of the casing. A plurality of stabilizing arms are rotatably attached to the main body. A link between the blades and the stabilizing arms forces the stabilizing arms to rotate outward when the blades rotate outward. The stabilizing arms are dimensioned to span the inner diameter of the casing string, while leaving clearance to rotate the tool. The outermost ends of the stabilizing arms are rounded to avoid cutting the casing and reduce drag.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 3, 2018
    Assignee: ABRADO, INC.
    Inventor: Timothy J. Kulage
  • Publication number: 20150096753
    Abstract: A casing cutting tool, to be disposed downhole in a casing string on a drillstring, for the cutting and/or milling of casing strings. The tool has a main body with a plurality of rotatable blades which can rotate between a first retracted position to a second position substantially at right angles to the main body. In this second position, cutting surfaces on the blades engage the casing wall, and rotation of the tool results in cutting of the casing. A plurality of stabilizing arms are rotatably attached to the main body. A link between the blades and the stabilizing arms forces the stabilizing arms to rotate outward when the blades rotate outward. The stabilizing arms are dimensioned to span the inner diameter of the casing string, while leaving clearance to rotate the tool. The outermost ends of the stabilizing arms are rounded to avoid cutting the casing and reduce drag.
    Type: Application
    Filed: March 8, 2013
    Publication date: April 9, 2015
    Inventor: Timothy J. Kulage
  • Patent number: 6609870
    Abstract: A granular semiconductor material transport system capable of continuous, non-contaminating transfer of granular semiconductor material from a large source vessel to a smaller and more manageable target vessel. Movement of the granular material is induced by flowing transfer fluid. The system includes a source vessel, a feed tube, a process vessel, a target vessel and a vacuum source, or mover. The source vessel contains a bulk supply of granular material to be transported. A feed tube received within the source vessel transfers the granular material entrained in a transfer fluid from the source vessel to the process vessel. The process vessel separates the granular material from any dust particles and deposits the granular material in the more manageable target vessel. The vacuum source sealably connects to the process vessel to evacuate the process vessel to set the granular polysilicon in motion within the system.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: August 26, 2003
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Dick S. Williams, Howard VanBooven, Jimmy D. Kurz, Timothy J. Kulage
  • Publication number: 20030077128
    Abstract: A granular semiconductor material transport system capable of continuous, non-contaminating transfer of granular semiconductor material from a large source vessel to a smaller and more manageable target vessel. Movement of the granular material is induced by flowing transfer fluid. The system includes a source vessel, a feed tube, a process vessel, a target vessel and a vacuum source, or mover. The source vessel contains a bulk supply of granular material to be transported. A feed tube received within the source vessel transfers the granular material entrained in a transfer fluid from the source vessel to the process vessel. The process vessel separates the granular material from any dust particles and deposits the granular material in the more manageable target vessel. The vacuum source sealably connects to the process vessel to evacuate the process vessel to set the granular polysilicon in motion within the system.
    Type: Application
    Filed: October 23, 2001
    Publication date: April 24, 2003
    Applicant: MEMC Electronic Materials, Inc.
    Inventors: Dick S. Williams, Howard VanBooven, Jimmy D. Kurz, Timothy J. Kulage
  • Patent number: 6511113
    Abstract: A device for connecting a first object to a second object the second object defining at least one surface which in turn defines a space, the device comprising (a) a member which may be connected to the first object, (b) a plurality of cams pivotally attached to the member, at least one of the cams defining an arcuate surface, and (c) a biasing object for biasing at least one of the cams against the surface of the second object, the member, the plurality of cams and the biasing object being sized and configured so that, when the member is connected to the first object and disposed within the space, upon biasing at least one of the cams, at least one of the cams pivots relative to the member so that the arcuate surface is placed and maintained in contact with at least one surface, thereby resisting force which might otherwise separate the first and second objects.
    Type: Grant
    Filed: September 11, 2000
    Date of Patent: January 28, 2003
    Inventor: Timothy J. Kulage
  • Patent number: 6435474
    Abstract: A non-contaminating gas-tight valve for controlling a flow of granular polysilicon. The valve has a spherical valve member formed from single-crystal polysilicon, so that any particles worn from the valve member during use will be non-contaminating polysilicon. The valve member has a passage through which granular polysilicon flows when the valve is in an open position. When rotated perpendicular to the flow, the passage no longer permits movement of granular polysilicon through the valve. The valve member has a smooth finish and is wiped clean when rotated against non-abrasive upper and lower seats, reducing the likelihood of valve member wear. A cavity between the valve member and the valve body allows for removal of excess granular polysilicon from the valve, inhibiting the valve from seizing due to excess granular polysilicon slipping past the upper valve seat and accumulating within the valve. The valve additionally forms a gas-tight seal between an upstream and downstream side of the valve.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: August 20, 2002
    Assignee: MEMC Electronic Materials, Inc.
    Inventors: Dick Stetson Williams, Treaf Andrus, Timothy J. Kulage, Ken Harrell