Patents by Inventor Timothy J. Nohara

Timothy J. Nohara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130098309
    Abstract: Operation of a bird deterrent system includes i. measurement of bird habituation to activation of deterrent devices; ii. reduction of habituation through increased selectivity in activating deterrents only for birds posing a threat to or threatened by a protected area, and in particular, those within threat altitudes; iii. provision of analytical data in support of safety management systems, risk management, etc.; iv. integrated, wide-area radar coverage with multiple virtual intrusion zones providing multiple lines of defense around and over very large protected areas.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Applicant: Accipiter Radar Technologies Inc.
    Inventors: Timothy J. NOHARA, Andrew M. UKRAINEC, Graeme S. JONES, Robert C. BEASON, Peter T. WEBER, Domingos Nelson COSTA, Carl KRASNOR
  • Patent number: 8384585
    Abstract: A real-time radar surveillance system comprises at least one land-based non-coherent radar sensor apparatus adapted for detecting maneuvering targets and targets of small or low radar cross-section. The radar sensor apparatus includes a marine radar device, a digitizer connected to the marine radar device for receiving therefrom samples of radar video echo signals, and computer programmed to implement a software-configurable radar processor generating target data including detection data and track data, the computer being connectable to a computer network including a database. The processor is figured to transmit at least a portion of the target data over the network to the database, the database being accessible via the network by at least one user application that receives target data from the database, the user application providing a user interface for at least one user of the system.
    Type: Grant
    Filed: March 1, 2011
    Date of Patent: February 26, 2013
    Assignee: Accipiter Radar Technologies Inc.
    Inventors: Timothy J. Nohara, Al-Nasir Premji, Andrew M. Ukrainec, Peter T Weber, Graeme S. Jones, Carl E. Krasnor
  • Patent number: 8235907
    Abstract: A medical system includes a carrier and a multiplicity of electromechanical transducers mounted to the carrier, the transducers being disposable in effective pressure-wave-transmitting contact with a patient. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals of at least one pre-established ultrasonic frequency to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging (which includes determining three-dimensional shapes) of internal tissue structures of the patient by analyzing signals generated by the second plurality of the transducers in response to second pressure waves produced at the internal tissue structures in response to the first pressure waves.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: August 7, 2012
    Assignee: Wilk Ultrasound of Canada, Inc
    Inventors: Peter J. Wilk, Timothy J. Nohara, Peter Weber
  • Publication number: 20110205103
    Abstract: A real-time radar surveillance system comprises at least one land-based non-coherent radar sensor apparatus adapted for detecting maneuvering targets and targets of small or low radar cross-section. The radar sensor apparatus includes a marine radar device, a digitizer connected to the marine radar device for receiving therefrom samples of radar video echo signals, and computer programmed to implement a software-configurable radar processor generating target data including detection data and track data, the computer being connectable to a computer network including a database. The processor is figured to transmit at least a portion of the target data over the network to the database, the database being accessible via the network by at least one user application that receives target data from the database, the user application providing a user interface for at least one user of the system.
    Type: Application
    Filed: March 1, 2011
    Publication date: August 25, 2011
    Applicant: Sicom Systems LTD
    Inventors: Timothy J. Nohara, Al-Nasir Premji, Andrew M. Ukrainec, Peter T. Weber, Graeme S. Jones, Carl E. Krasnor
  • Patent number: 7940206
    Abstract: A real-time radar surveillance system comprises at least one land-based non-coherent radar sensor apparatus adapted for detecting maneuvering targets and targets of small or low radar cross-section. The radar sensor apparatus includes a marine radar device, a digitizer connected to the marine radar device for receiving therefrom samples of radar video echo signals, and computer programmed to implement a software-configurable radar processor generating target data including detection data and track data, the computer being connectable to a computer network including a database. The processor is figured to transmit at least a portion of the target data over the network to the database, the database being accessible via the network by at least one user application that receives target data from the database, the user application providing a user interface for at least one user of the system.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: May 10, 2011
    Assignee: Accipiter Radar Technologies Inc.
    Inventors: Timothy J. Nohara, Al-Nasir Premji, Andrew M. Ukrainec, Peter T Weber, Graeme S. Jones, Carl E. Krasnor
  • Patent number: 7914454
    Abstract: A method and apparatus for electronic volume data acquisition using ultrasound generates image data in a scanning and imaging process known as coherent aperture combining beamforming (CAC-BF). The CAC-BF technique can be applied in an azimuth dimension and/or an elevation dimension, to form an ultrasound image line, image plane, or image data cube. Several innovations relating to the design and ordering of shots and efficient weighting algorithms that address various performance issues associated with B-mode and other modes such as Doppler, and harmonic imaging are disclosed. The invention has significant advantages over other synthetic aperture imaging techniques and conventional imaging techniques by supporting higher resolution, larger volumes and/or shorter acquisition times than comparative techniques, using similar system hardware complexity.
    Type: Grant
    Filed: June 25, 2004
    Date of Patent: March 29, 2011
    Assignee: Wilk Ultrasound of Canada, Inc.
    Inventors: Peter Weber, Timothy J Nohara, Al-Nasir Premji
  • Patent number: 7864103
    Abstract: A height-finding 3D avian radar comprises an azimuthally scanning radar system with means of varying the elevation pointing angle of the antenna. The elevation angle can be varied by employing either an antenna with multiple beams, or an elevation scanner, or two radars pointed at different elevations. Heights of birds are determined by analyzing the received echo returns from detected bird targets illuminated with the different elevation pointing angles.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: January 4, 2011
    Assignee: Accipiter Radar Technologies, Inc.
    Inventors: Peter T. Weber, Timothy J. Nohara
  • Patent number: 7597665
    Abstract: A medical system includes a multiplicity of electromechanical transducers disposable in effective pressure-wave-transmitting contact with a patient and mounted to a carrier. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging of internal tissue structures. The control unit includes phased-array signal processing circuitry for effectuating an electronic scanning of the internal tissue structures which facilitates one-dimensional, 2D, and 3D data acquisition and circuitry for defining multiple data gathering apertures and for coherently combining structural data from the respective apertures to increase spatial resolution.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: October 6, 2009
    Inventors: Peter J. Wilk, Timothy J. Nohara, Peter Weber
  • Publication number: 20090163809
    Abstract: A medical apparatus includes a scanner for generating raw image data of internal tissue structures of a patient, and a computer operatively connected to the scanner and programmed to derive a three-dimensional electronic map or model of the internal tissue structures from the raw data. An image reproduction device is operatively connected to the computer for reproducing the map or model in a visually readable format. The computer controls the image reproduction device to reproduce the map or model. The visually readable format includes graphical representations of the tissue structures alignable on a skin surface of the patient with the tissue structures. In use, a medical practitioner inserts a sharp instrument into a patient through the reproduced map, using the map as a locator assist.
    Type: Application
    Filed: June 3, 2004
    Publication date: June 25, 2009
    Inventors: Scott D. Kane, Peter J. Wilk, Timothy J. Nohara
  • Patent number: 7497828
    Abstract: A medical system includes a carrier and a multiplicity of electromechanical transducers mounted to the carrier, the transducers being disposable in effective pressure-wave-transmitting contact with a patient. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals of at least one pre-established ultrasonic frequency to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging (which includes determining three-dimensional shapes) of internal tissue structures of the patient by analyzing signals generated by the second plurality of the transducers in response to second pressure waves produced at the internal tissue structures in response to the first pressure waves.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: March 3, 2009
    Assignee: Wilk Ultrasound of Canada, Inc.
    Inventors: Peter J. Wilk, Timothy J. Nohara, Peter T. Weber
  • Publication number: 20080266171
    Abstract: A height-finding 3D avian radar comprises an azimuthally scanning radar system with means of varying the elevation pointing angle of the antenna. The elevation angle can be varied by employing either an antenna with multiple beams, or an elevation scanner, or two radars pointed at different elevations. Heights of birds are determined by analyzing the received echo returns from detected bird targets illuminated with the different elevation pointing angles.
    Type: Application
    Filed: April 27, 2007
    Publication date: October 30, 2008
    Applicant: ACCIPITER RADAR TECHNOLOGIES, INC.
    Inventors: Peter T. Weber, Timothy J. Nohara
  • Publication number: 20080228077
    Abstract: A medical system includes a carrier and a multiplicity of electromechanical transducers mounted to the carrier, the transducers being disposable in effective pressure-wave-transmitting contact with a patient. Energization componentry is operatively connected to a first plurality of the transducers for supplying the same with electrical signals of at least one pre-established ultrasonic frequency to produce first pressure waves in the patient. A control unit is operatively connected to the energization componentry and includes an electronic analyzer operatively connected to a second plurality of the transducers for performing electronic 3D volumetric data acquisition and imaging (which includes determining three-dimensional shapes) of internal tissue structures of the patient by analyzing signals generated by the second plurality of the transducers in response to second pressure waves produced at the internal tissue structures in response to the first pressure waves.
    Type: Application
    Filed: March 6, 2008
    Publication date: September 18, 2008
    Inventors: Peter J. Wilk, Timothy J. Nohara, Peter T. Weber
  • Publication number: 20080139937
    Abstract: A probe for electronic volume data acquisition using ultrasound incorporates a plurality of transducer elements arranged in a two dimensional array having an azimuth direction and an elevation direction. The transducer elements have a first element size in the azimuth dimension and a second element size in the elevation dimension. At least one of the first and second element sizes is at least twice a characteristic wavelength of a waveform used to drive the array of transducer elements, where the characteristic wavelength is defined as the wavelength corresponding to a center frequency of the waveform. Image data is generated in a scanning process using a CAC-BF technique in an azimuth dimension and/or an elevation dimension, to form an ultrasound image line, image plane, or image data cube.
    Type: Application
    Filed: October 15, 2007
    Publication date: June 12, 2008
    Applicant: WILK ULTRASOUND OF CANADA, INC.
    Inventors: Timothy J. Nohara, Peter Weber, Richard Bernardi
  • Patent number: 7285094
    Abstract: A probe for electronic volume data acquisition using ultrasound incorporates a plurality of transducer elements arranged in a two dimensional array having an azimuth direction and an elevation direction. The transducer elements have a first element size in the azimuth dimension and a second element size in the elevation dimension. At least one of the first and second element sizes is at least twice a characteristic wavelength of a waveform used to drive the array of transducer elements, where the characteristic wavelength is defined as the wavelength corresponding to a center frequency of the waveform. Image data is generated in a scanning process using a CAC-BF technique in an azimuth dimension and/or an elevation dimension, to form an ultrasound image line, image plane, or image data cube.
    Type: Grant
    Filed: January 28, 2003
    Date of Patent: October 23, 2007
    Inventors: Timothy J. Nohara, Peter Weber, Richard Bernardi
  • Publication number: 20030163046
    Abstract: A probe for electronic volume data acquisition using ultrasound incorporates a plurality of transducer elements arranged in a two dimensional array having an azimuth direction and an elevation direction. The transducer elements have a first element size in the azimuth dimension and a second element size in the elevation dimension. At least one of the first and second element sizes is at least twice a characteristic wavelength of a waveform used to drive the array of transducer elements, where the characteristic wavelength is defined as the wavelength corresponding to a center frequency of the waveform. Image data is generated in a scanning process using a CAC-BF technique in an azimuth dimension and/or an elevation dimension, to form an ultrasound image line, image plane, or image data cube.
    Type: Application
    Filed: January 28, 2003
    Publication date: August 28, 2003
    Applicant: WILK ULTRASOUND OF CANADA, INC.
    Inventors: Timothy J. Nohara, Peter Weber, Richard Bernardi
  • Patent number: 5333147
    Abstract: A digital signal transmission channel degradation monitor for determining the error rate in a received data signal includes circuitry to generate an eye pattern signal for the received data signal which eye pattern signal is applied to a grid containing a number of cells defining regions in an ideal eye pattern. Each cell contains circuity to count the number of time an eye trace is located in that particular cell over a predetermined period of time. A number of cells within the ideal eye pattern area are grouped to define a predetermined pseudo error region. The number of times an eye trace enters into that error region over a predetermined time provides an indication of the generalized pseudo error rate for the transmission system. In addition, the number of times an eye trace is located in particular cells through the grid over a predetermined period of time can determine the type of stress that the transmission system is undergoing.
    Type: Grant
    Filed: August 25, 1992
    Date of Patent: July 26, 1994
    Assignee: Her Majesty the Queen in Right of Canada as represented by the Minister of Defence
    Inventors: Timothy J. Nohara, Al-Nasir Premji