Patents by Inventor Timothy J. Shepodd

Timothy J. Shepodd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8802444
    Abstract: A “real time” method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: August 12, 2014
    Assignee: Sandia Corporation
    Inventors: James R. McElhanon, Timothy J. Shepodd
  • Patent number: 8247554
    Abstract: A “real time” method for detecting chemical agents generally and particularly electrophilic and nucleophilic species by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species. By bonding or otherwise attaching these precursor molecules to a surface or substrate they can be used in numerous applications.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: August 21, 2012
    Assignee: Sandia Corporation
    Inventors: James R. McElhanon, Timothy J. Shepodd
  • Patent number: 7754077
    Abstract: Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 ?m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: July 13, 2010
    Assignee: Sandia Corporation
    Inventors: Anup K. Singh, Brian J. Kirby, Timothy J. Shepodd
  • Patent number: 7625474
    Abstract: The present invention relates to an electrokinetic (EK) pump capable of creating high pressures electroosmotically, and capable of retaining high pressures. Both pressure creation and retention are accomplished without the need for moving parts. The EK pump uses a polymerizable fluid that creates the pressure-retaining seal within the EK pump when polymerization is initiated, typically by exposure to UV radiation. Weaklink devices are advantageously constructed including such a pressure-retaining EK pump since, among other advantages, the response of the weaklink device relies on predictable and reliable chemical polymerization reactions.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: December 1, 2009
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, Matthew P. Duncan
  • Patent number: 7618524
    Abstract: A “cast-in-place” monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.
    Type: Grant
    Filed: August 10, 2004
    Date of Patent: November 17, 2009
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, Mark S. Tichenor, Alexander Artau
  • Patent number: 7534315
    Abstract: Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 ?m, which bonds to the glass microchannel and forms a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: May 19, 2009
    Assignee: Sandia Corporation
    Inventors: Anup K. Singh, Brian J. Kirby, Timothy J. Shepodd
  • Patent number: 7495145
    Abstract: The invention provides methods and a reactor for safely destroying containers having toxic chemical and biological materials contained therein. The reactor comprises a pressure vessel having an internal reaction chamber and at least one heater disposed on an exterior of the pressure vessel. A fragment-suppression system is also disposed within the internal reaction chamber. The fragment-suppression system is adapted to receive a container therein, such as an energetic chemical munition, and is adapted to receive a charge for opening the container. An injection port is also provided so that oxidants can be injected into said reaction chamber to neutralize the chemical and biological materials after the container has been opened.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: February 24, 2009
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Edward F. Doyle, III, Brent L. Haroldsen, Timothy J. Shepodd, Benjamin C. Wu
  • Patent number: 7488407
    Abstract: A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
    Type: Grant
    Filed: October 19, 2004
    Date of Patent: February 10, 2009
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, Leroy Whinnery, Jr., William R. Even, Jr.
  • Patent number: 7485277
    Abstract: A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably platinum, is disclosed. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200° C., or prolonged exposure to temperatures in the range of 100-300° C. Moreover, these novel hydrogen getter materials can be used to efficiently remove hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 3, 2009
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, George M. Buffleben
  • Patent number: 7449579
    Abstract: A “real time” method for detecting electrophilic and nucleophilic species generally by employing tunable, precursor sensor materials that mimic the physiological interaction of these agents to form highly florescent berberine-type alkaloids that can be easily and rapidly detected. These novel precursor sensor materials can be tuned for reaction with both electrophilic (chemical species, toxins) and nucleophilic (proteins and other biological molecules) species.
    Type: Grant
    Filed: May 2, 2006
    Date of Patent: November 11, 2008
    Assignee: Sandia Corporation
    Inventors: James R. McElhanon, Timothy J. Shepodd
  • Patent number: 7422701
    Abstract: A composition for removing hydrogen from an atmosphere, comprising a mixture of a polyphenyl ether and a hydrogenation catalyst, preferably a precious metal catalyst, and most preferably Pt. This composition is stable in the presence of oxygen, will not polymerize or degrade upon exposure to temperatures in excess of 200° C., or prolonged exposure to temperatures in the range of 100-300° C. Moreover, these novel hydrogen getter materials can be used to efficiently removing hydrogen from mixtures of hydrogen/inert gas (e.g., He, Ar, N2), hydrogen/ammonia atmospheres, such as may be encountered in heat exchangers, and hydrogen/carbon dioxide atmospheres. Water vapor and common atmospheric gases have no adverse effect on the ability of these getter materials to absorb hydrogen.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: September 9, 2008
    Assignee: Sandia Corporation
    Inventors: Timothy J. Shepodd, George M. Buffleben
  • Patent number: 7264723
    Abstract: Laser-induced phase-separation polymerization of a porous acrylate polymer is used for in-situ fabrication of dialysis membranes inside glass microchannels. A shaped 355 nm laser beam is used to produce a porous polymer membrane with a thickness of about 15 ?m, which bonds to the glass microchannel and form a semi-permeable membrane. Differential permeation through a membrane formed with pentaerythritol triacrylate was observed and quantified by comparing the response of the membrane to fluorescein and fluorescently tagging 200 nm latex microspheres. Differential permeation was observed and quantified by comparing the response to rhodamine 560 and lactalbumin protein in a membrane formed with SPE-methylene bisacrylamide. The porous membranes illustrate the capability for the present technique to integrate sample cleanup into chip-based analysis systems.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: September 4, 2007
    Assignee: Sandia Corporation
    Inventors: Anup K. Singh, Brian J. Kirby, Timothy J. Shepodd
  • Patent number: 7052608
    Abstract: A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: May 30, 2006
    Assignee: Sandia National Laboratories
    Inventors: Timothy J. Shepodd, Elizabeth Franklin, Zane T. Prickett, Alexander Artau
  • Patent number: 7022381
    Abstract: A microvalve having a cast-in-place and lithographically shaped mobile, polymer monolith for fluid flow control in microfluidic devices and method of manufacture. The microvalve contains a porous fluorinated polymer monolithic element whose pores are filled with an electrically insulating, high dielectric strength fluid, typically a perfluorinated liquid. This combination provides a microvalve that combines high dielectric strength with extremely low electrical conductivity. These microvalves have been shown to have resistivities of at least 100 G? and are compatible with solvents such as water at a pH between 2.7 and 9.0, 1-1 propanol, acetonitrile, and acetone.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: April 4, 2006
    Assignee: Sandia National Laboratories
    Inventors: Brian J. Kirby, David S. Reichmuth, Timothy J. Shepodd
  • Patent number: 7001535
    Abstract: This invention describes a solution to the particular problem of liquid water formation in hydrogen getters exposed to quantities of oxygen. Water formation is usually desired because the recombination reaction removes hydrogen without affecting gettering capacity and the oxygen removal reduces the chances for a hydrogen explosion once free oxygen is essentially removed. The present invention describes a getter incorporating a polyacrylate compound that can absorb up to 500% of its own weight in liquid water without significantly affecting its hydrogen gettering/recombination properties, but that also is insensitive to water vapor.
    Type: Grant
    Filed: May 10, 2002
    Date of Patent: February 21, 2006
    Assignee: Sandia National Laboratories
    Inventor: Timothy J. Shepodd
  • Patent number: 6988402
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: September 4, 2003
    Date of Patent: January 24, 2006
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Patent number: 6952962
    Abstract: A cast-in-place and lithographically shaped mobile, monolithic polymer element for fluid flow control in microfluidic devices and method of manufacture. Microfluid flow control devices, or microvalves that provide for control of fluid or ionic current flow can be made incorporating a cast-in-place, mobile monolithic polymer element, disposed within a microchannel, and driven by fluid pressure (either liquid or gas) against a retaining or sealing surface. The polymer elements are made by the application of lithographic methods to monomer mixtures formulated in such a way that the polymer will not bond to microchannel walls. The polymer elements can seal against pressures greater than 5000 psi, and have a response time on the order of milliseconds. By the use of energetic radiation it is possible to depolymerize selected regions of the polymer element to form shapes that cannot be produced by conventional lithographic patterning and would be impossible to machine.
    Type: Grant
    Filed: May 8, 2002
    Date of Patent: October 11, 2005
    Assignee: Sandia National Laboratories
    Inventors: Ernest F. Hasselbrink, Jr., Jason E. Rehm, Timothy J. Shepodd, Brian J. Kirby
  • Patent number: 6881383
    Abstract: An explosive destruction system and method for safely destroying explosively configured chemical munitions. The system comprises a sealable, gas-tight explosive containment vessel, a fragment suppression system positioned in said vessel, and shaped charge means for accessing the interior of the munition when the munition is placed within the vessel and fragment suppression system. Also provided is a means for treatment and neutralization of the munition's chemical fills, and means for heating and agitating the contents of the vessel. The system is portable, rapidly deployable and provides the capability of explosively destroying and detoxifying chemical munitions within a gas-tight enclosure so that there is no venting of toxic or hazardous chemicals during detonation.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: April 19, 2005
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kenneth L. Tschritter, Brent L. Haroldsen, Timothy J. Shepodd, Jerome H. Stofleth, Raymond A. DiBerardo
  • Patent number: 6846399
    Abstract: A polymer material useful as the porous dielectric medium for microfluidic devices generally and electrokinetic pumps in particular. The polymer material is produced from an inverse (water-in-oil) emulsion that creates a 3-dimensional network characterized by small pores and high internal volume, characteristics that are particularly desirable for the dielectric medium for electrokinetic pumps. Further, the material can be cast-to-shape inside a microchannel. The use of bifunctional monomers provides for charge density within the polymer structure sufficient to support electroosmotic flow. The 3-dimensional polymeric material can also be covalently bound to the channel walls thereby making it suitable for high-pressure applications.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: January 25, 2005
    Assignee: Sandia National Laboratories
    Inventors: Timothy J. Shepodd, Leroy Whinnery, Jr., William R. Even, Jr.
  • Publication number: 20040251205
    Abstract: A three-dimensional microporous polymer network material, or monolith, cast-to-shape in a microchannel. The polymer monolith, produced by a phase separation process, is capable of trapping and retaining charged protein species from a mixture of charged and uncharged species under the influence of an applied electric field. The retained charged protein species are released from the porous polymer monolith by a pressure driven flow in the substantial absence of the electric field. The pressure driven flow is independent of direction and thus neither means to reverse fluid flow nor a multi-directional flow field is required, a single flow through the porous polymer monolith can be employed, in contrast to prior art systems. The monolithic polymer material produced by the invention can function as a chromatographic medium.
    Type: Application
    Filed: May 7, 2004
    Publication date: December 16, 2004
    Inventors: Timothy J. Shepodd, Elizabeth Franklin, Zane T. Prickett, Alexander Artau