Patents by Inventor Timothy K. Carns

Timothy K. Carns has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8324069
    Abstract: A method of fabricating a high-performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used, such as a Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) or other Anti-Reflective Coatings (ARCS), such as a conductive film like TiN. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. A Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: December 4, 2012
    Assignee: IXYS CH GmbH
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 8017475
    Abstract: A method of fabricating a high-performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used, such as a Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) or other Anti-Reflective Coatings (ARCS), such as a conductive film like TiN. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. A Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: September 13, 2011
    Assignee: IXYS CH GmbH
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 7768052
    Abstract: A method of fabricating a high-performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used, such as a Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) or other Anti-Reflective Coatings (ARCS), such as a conductive film like TiN. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. A Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: November 29, 2005
    Date of Patent: August 3, 2010
    Assignee: ZiLOG, Inc.
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 7060584
    Abstract: A method of fabricating a high performance capacitor that may be incorporated into a standard CMOS fabrication process suitable for submicron devices is described. The parameters used in the standard CMOS process may be maintained, particularly for the definition and etch of the lower electrode layer. To reduce variation in critical dimension width, an Anti-Reflective Layer (ARL) is used. In the preferred embodiment, this is of the Plasma Enhanced chemical vapor deposition Anti-Reflective Layer (PEARL) type, although other Anti-Reflective Coatings (ARCs) or layers, such as a conductive film like TiN may be employed. This ARL formation occurs after the capacitor specific process steps, but prior to the masking used for defining the lower electrodes. In one embodiment, a Rapid Thermal Oxidation (RTO) is performed subsequent to removing the unwanted capacitor dielectric layer from the transistor poly outside of the capacitor regions, but prior to the PEARL deposition.
    Type: Grant
    Filed: July 12, 1999
    Date of Patent: June 13, 2006
    Assignee: ZiLOG, Inc.
    Inventors: Timothy K. Carns, John L. Horvath, Lee J. DeBruler, Michael J. Westphal
  • Patent number: 6849510
    Abstract: Non-oxidizing spacer densification method for producing semiconductor devices, such as MOSFET devices, and that may be implemented during semiconductor fabrication with little or substantially no polycide adhesion loss experienced during spacer densification. The method may be implemented to provide good polycide adhesion characteristics with reduced process complexity over conventional methods by eliminating the need for additional process steps such as metal silicide encapsulation or polysilicon surface treatments.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: February 1, 2005
    Assignee: ZiLOG, Inc.
    Inventors: Brett D. Lowe, John A. Smythe, Timothy K. Carns
  • Publication number: 20040072397
    Abstract: Non-oxidizing spacer densification method for producing semiconductor devices, such as MOSFET devices, and that may be implemented during semiconductor fabrication with little or substantially no polycide adhesion loss experienced during spacer densification. The method may be implemented to provide good polycide adhesion characteristics with reduced process complexity over conventional methods by eliminating the need for additional process steps such as metal silicide encapsulation or polysilicon surface treatments.
    Type: Application
    Filed: September 22, 2003
    Publication date: April 15, 2004
    Applicant: ZiLOG, Inc.
    Inventors: Brett D. Lowe, John A. Smythe, Timothy K. Carns
  • Patent number: 6642112
    Abstract: Non-oxidizing spacer densification method for producing semiconductor devices, such as MOSFET devices, and that may be implemented during semiconductor fabrication with little or substantially no polycide adhesion loss experienced during spacer densification. The method may be implemented to provide good polycide adhesion characteristics with reduced process complexity over conventional methods by eliminating the need for additional process steps such as metal silicide encapsulation or polysilicon surface treatments.
    Type: Grant
    Filed: July 30, 2001
    Date of Patent: November 4, 2003
    Assignee: ZiLOG, Inc.
    Inventors: Brett D. Lowe, John A. Smythe, Timothy K. Carns
  • Publication number: 20030203577
    Abstract: Non-oxidizing spacer densification method for producing semiconductor devices, such as MOSFET devices, and that may be implemented during semiconductor fabrication with little or substantially no polycide adhesion loss experienced during spacer densification. The method may be implemented to provide good polycide adhesion characteristics with reduced process complexity over conventional methods by eliminating the need for additional process steps such as metal silicide encapsulation or polysilicon surface treatments.
    Type: Application
    Filed: July 30, 2001
    Publication date: October 30, 2003
    Inventors: Brett D. Lowe, John A. Smythe, Timothy K. Carns
  • Patent number: 6323091
    Abstract: A method for manufacturing a semiconductor device in which ROM programming ion implantation is performed by utilizing the same mask as used for implanting dopant in MOS transistors. The ROM programming ion implantation is conducted under the same conditions as the MOS transistor forming step. Only a single mask needs to be modified for the programming, thus reducing cost and complexity of manufacturing the device.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: November 27, 2001
    Assignee: Zilog, Inc.
    Inventors: Sungkwon Lee, Timothy K. Carns
  • Patent number: 6165846
    Abstract: The improvement of thin tunnel oxides used in EEPROM and FLASH tecnologies using post-oxidation annealing in nitrogen causes defects in subsequent oxide films. These are manifested by oxide thinning at the bird's beak and result in high gate leakage. As the time and temperature to the post-oxidation annealing are increased for improved tunnel oxide performance, the number of defects increases rapidly. A method of realizing the improved tunnel oxide Q.sub.BD using higher post-oxidation time and temperature annealing while at the same time not degrading the quality of subsequent gate oxides is shown. The use of sacrificial oxidation and strip just prior to the transistor gate oxidation is described. This process removes the additional nitride which exists at the field edges, leading to the oxide thinning. As a result, improved tunnel oxide integrity can be achieved without degradation of high and low voltage transistors.
    Type: Grant
    Filed: March 2, 1999
    Date of Patent: December 26, 2000
    Assignee: Zilog, Inc.
    Inventors: Timothy K. Carns, John A. Smythe, III, John A. Ransom, Bernice L. Kickel, John E. Berg
  • Patent number: 5965931
    Abstract: A bipolar transistor includes multiple coupled delta layers in the base region between the emitter and collector regions to enhance carrier mobility and conductance. The delta layers can be varied in number, thickness, and dopant concentration to optimize desired device performance and enhanced mobility and conductivity vertically for emitter to collector and laterally parallel to the delta-doped layers. The transistors can be homojunction devices or heterojunction devices formed in either silicon or III-V semiconductor material.
    Type: Grant
    Filed: September 15, 1994
    Date of Patent: October 12, 1999
    Assignee: The Board of Regents of the University of California
    Inventors: Kang L. Wang, Timothy K. Carns, Xinyu Zheng
  • Patent number: 5684737
    Abstract: A static random access memory (SRAM) cell includes a bistable diode and a load device serially connectable between two voltage potentials (VDD, Ground) with a gate device (field effect transistor) connected between a bit line and a common terminal of the bistable diode and load device and a control terminal of the gate device connected to a word line. The bistable diode includes a GeSi structure between a p-doped semiconductor region and a spaced n-doped semiconductor region. The GeSi structure can be a GeSi/Si superlattice and a .delta.-doped tunnel junction, a Ge.sub.x Si.sub.1-x multiple well structure, or a .delta.-doped tunnel junction.
    Type: Grant
    Filed: December 8, 1995
    Date of Patent: November 4, 1997
    Assignee: The Regents of the University of California
    Inventors: Kang L. Wang, Xinyu Zheng, Timothy K. Carns