Patents by Inventor Timothy Kent Zahnley

Timothy Kent Zahnley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220085889
    Abstract: A pluggable bidirectional optical amplifier module may include preamp and booster optical amplifiers and a housing. The preamp optical amplifier may be configured to amplify optical signals traveling in a first direction. The booster optical amplifier may be configured to amplify optical signals traveling in a second direction. The housing may at least partially enclose the preamp optical amplifier and the booster optical amplifier. The pluggable bidirectional optical amplifier module may have a mechanical form factor that is compliant with a pluggable communication module form factor MSA. A colorless mux/demux cable assembly may be operated with the pluggable bidirectional optical amplifier. The colorless mux/demux cable assembly may include a 1:N optical splitter a N:1 optical combiner coupled side-by-side to the 1:N optical splitter, a first fiber optic cable optic cable, and a second fiber optic cable.
    Type: Application
    Filed: September 23, 2021
    Publication date: March 17, 2022
    Inventors: Martin R. Williams, Yajun Wang, Eric Timothy Green, Aravanan Gurusami, Deepak Devicharan, Timothy Kent Zahnley, Mike Burgess
  • Publication number: 20210281323
    Abstract: A pluggable bidirectional optical amplifier module may include preamp and booster optical amplifiers and a housing. The preamp optical amplifier may be configured to amplify optical signals traveling in a first direction. The booster optical amplifier may be configured to amplify optical signals traveling in a second direction. The housing may at least partially enclose the preamp optical amplifier and the booster optical amplifier. The pluggable bidirectional optical amplifier module may have a mechanical form factor that is compliant with a pluggable communication module form factor MSA. A colorless mux/demux cable assembly may be operated with the pluggable bidirectional optical amplifier. The colorless mux/demux cable assembly may include a 1:N optical splitter a N:1 optical combiner coupled side-by-side to the 1:N optical splitter, a first fiber optic cable optic cable, and a second fiber optic cable.
    Type: Application
    Filed: March 6, 2020
    Publication date: September 9, 2021
    Inventors: Martin R. Williams, Yajun Wang, Eric Timothy Green, Aravanan Gurusami, Deepak Devicharan, Timothy Kent Zahnley, Mike Burgess
  • Patent number: 8326153
    Abstract: A tunable dispersion compensator (TDC) is tuned from a first dispersion setpoint to a second dispersion setpoint while maintaining continuity of the dispersion. The dispersion tuning follows a pre-determined trajectory in the time domain, so that continuity of the optical dispersion across the channel optical bandwidth is maintained while minimizing all other TDC-induced optical impairments during a tuning period.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: December 4, 2012
    Assignee: Oclaro (North America), Inc.
    Inventors: Lan Sheng, Aaron Zilkie, Mark Summa, Timothy Kent Zahnley, Peter G. Wigley
  • Patent number: 8213073
    Abstract: Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: July 3, 2012
    Assignee: Oclaro (North America), Inc.
    Inventors: Mark Summa, Peter Gerard Wigley, Aravanan Gurusami, Ghang-Ho Lee, Douglas Lleweilyn Butler, Robert David Paul Ridding, Timothy Kent Zahnley
  • Publication number: 20110249979
    Abstract: A tunable dispersion compensator (TDC) is tuned from a first dispersion setpoint to a second dispersion setpoint while maintaining continuity of the dispersion.
    Type: Application
    Filed: April 9, 2010
    Publication date: October 13, 2011
    Inventors: Lan Sheng, Aaron Zilkie, Mark Summa, Timothy Kent Zahnley, Peter G. Wigley
  • Publication number: 20100165438
    Abstract: Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
    Type: Application
    Filed: December 3, 2009
    Publication date: July 1, 2010
    Inventors: Mark Summa, Peter Gerard Wigley, Aravanan Gurusami, Ghang-Ho Lee, Douglas Lleweilyn Butler, Robert David Paul Ridding, Timothy Kent Zahnley
  • Patent number: 7706045
    Abstract: Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: April 27, 2010
    Assignee: Oclaro North America, Inc.
    Inventors: Mark Summa, Peter Gerard Wigley, Aravanan Gurusami, Ghang-Ho Lee, Douglas Llewellyn Butler, Robert David Paul Ridding, Timothy Kent Zahnley
  • Publication number: 20090109540
    Abstract: Described is a method for designing individual stages of a multiple cascaded etalon TDC device to allow continuous thermo-optic tuning over a desired range without inducing incremental signal distortion due to uncontrolled and unpredictable dispersion of the TDC during tuning. This allows the signal to transmit without encountering periods of incremental distortion or dark spots. The method includes prior knowledge of each etalon stage, after full assembly, for spectral group delay profile as a function of temperature through modeling and/or characterization. Characterization can account for performance variations that are due to allowed manufacturing tolerances.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Inventors: Mark Summa, Peter Gerard Wigley, Aravanan Gurusami, Ghang-Ho Lee, Dounglas Llewellyn Butler, Robert David Paul Ridding, Timothy Kent Zahnley