Patents by Inventor Timothy L. Jackson

Timothy L. Jackson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240091780
    Abstract: An analyte permeation testing instrument with an edge leakage minimizing feature and a method of measuring permeability of a test film for a target analyte utilizing the analyte permeation testing instrument. The instrument includes a cartridge and a target analyte sensor. The cartridge has separable first and second plates having first and second cells respectively. The plates are operable for engaging a test film therebetween so as to sealingly separate the first and second cells. A surround around at least one of the first cell and the second cell projects within the interface between the first and second plates for engaging a periphery of the test film to compress the test film and thereby form a peripheral edge seal when the plates are clamped together.
    Type: Application
    Filed: August 19, 2022
    Publication date: March 21, 2024
    Inventors: Timothy A. Ascheman, Jeffrey L. Jackson, Slava A. Berezovskiy
  • Patent number: 7811903
    Abstract: Methods for thinning a bumped semiconductor wafer, as well as methods for producing flip-chips of very thin profiles, are disclosed. According to the methods of the present invention, a mold compound is interspersed between conductive bumps on the active face of a wafer to provide support and protection for the wafer structure both during and after a process of removing the wafer's inactive back side silicon surface. The mold compound also serves to preserve the integrity of the conductively bumped aspects of the wafer during subsequent processing and may, after the wafer is diced, act as all or part of an underfill material for flip-chip applications.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: October 12, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Ford B. Grigg, Timothy L. Jackson
  • Patent number: 7755204
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: July 13, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Publication number: 20080153204
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Application
    Filed: January 2, 2008
    Publication date: June 26, 2008
    Applicant: Micron Technology, Inc.
    Inventors: Timothy L. Jackson, Tim E. Murphy
  • Patent number: 7355273
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: April 8, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Timothy L. Jackson, Tim E. Murphy
  • Patent number: 7291543
    Abstract: Methods for thinning a bumped semiconductor wafer, as well as methods for producing flip-chips of very thin profiles, are disclosed. According to the methods of the present invention, a mold compound is interspersed between conductive bumps on the active face of a wafer to provide support and protection for the wafer structure both during and after a process of removing the wafer's inactive back side silicon surface. The mold compound also serves to preserve the integrity of the conductively bumped aspects of the wafer during subsequent processing and may, after the wafer is diced, act as all or part of an underfill material for flip-chip applications.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: November 6, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Ford B. Grigg, Timothy L. Jackson
  • Patent number: 7217596
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: May 15, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Patent number: 7186576
    Abstract: Embodiments of the present technique relate to forming die stacks. Specifically, embodiments of the present technique include a method of forming and testing semiconductor die comprising forming a die stack of at least two semiconductor die without attaching either of the at least two semiconductor die to a substrate. Further, present embodiments include testing the semiconductor die in the die stack after the die stack is formed and prior to attaching either of the at least two semiconductor die to the substrate.
    Type: Grant
    Filed: November 4, 2005
    Date of Patent: March 6, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Patent number: 7029931
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Grant
    Filed: February 3, 2004
    Date of Patent: April 18, 2006
    Assignee: Micron Technology, inc.
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Patent number: 6988225
    Abstract: A method and an apparatus are provided for verifying a fault detection result in a system. The apparatus includes an interface and a control unit. The interface is adapted to receive data associated with a process operation and adapted to receive information provided by a process controller associated with the process operation. The control unit, which is communicatively coupled to the interface, is adapted to perform a fault detection analysis based on the data associated with the process operation and verify a result of the fault detection analysis based on the information provided by the process controller.
    Type: Grant
    Filed: October 31, 2002
    Date of Patent: January 17, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Matthew A. Purdy, Richard J. Markle, Timothy L. Jackson
  • Patent number: 6985825
    Abstract: A method includes processing a plurality of workpieces to form at least one feature on each workpiece. A plurality of characteristics of the feature is measured. A covariance matrix including diagonal and non-diagonal terms for the plurality of characteristics measured is constructed. At least the non-diagonal terms of the covariance matrix are monitored. A sampling plan for measuring the workpieces is determined based on the monitoring. A system includes a plurality of tools, at least one metrology tool, and a sampling controller. The tools are configured to process a plurality of workpieces to form at least one feature on each workpiece. The metrology tool is configured to measure a plurality of characteristics of the feature.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: January 10, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Richard P. Good, Timothy L. Jackson, Brian K. Cusson
  • Patent number: 6962867
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: November 8, 2005
    Assignee: MicronTechnology, Inc.
    Inventors: Timothy L. Jackson, Tim E. Murphy
  • Patent number: 6925347
    Abstract: A method and apparatus is provided for a process control based on an estimated process result. The method comprises processing a workpiece using a processing tool, receiving trace data associated with the processing of the workpiece from the processing tool and estimating at least one process result of the workpiece based on at least a portion of the received trace data. The method further comprises adjusting processing of a next workpiece based on the estimated at least one process result.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: August 2, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Michael L. Miller, Thomas J. Sonderman, Alexander J. Pasadyn, Richard J. Markle, Brian K. Cusson, Patrick M. Cowan, Timothy L. Jackson, Naomi M. Jenkins
  • Patent number: 6905946
    Abstract: Methods for thinning a bumped semiconductor wafer, as well as methods for producing flip-chips of very thin profiles, are disclosed. According to the methods of the present invention, a mold compound is interspersed between conductive bumps on the active face of a wafer to provide support and protection for the wafer structure both during and after a process of removing the wafer's inactive back side silicon surface. The mold compound also serves to preserve the integrity of the conductively bumped aspects of the wafer during subsequent processing and may, after the wafer is diced, act as all or part of an underfill material for flip-chip applications.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: June 14, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Ford B. Grigg, Timothy L. Jackson
  • Patent number: 6800930
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and witch extend from an active surface to a back surface of the semiconductor substrate. The redistrobution patterns are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: October 5, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Timothy L. Jackson, Tim E. Murphy
  • Publication number: 20040154956
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 12, 2004
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Publication number: 20040154722
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 12, 2004
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Publication number: 20040155327
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 12, 2004
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Publication number: 20040157373
    Abstract: A technique for forming die stacks. Specifically, a stacking tip is provided to facilitate the stacking of die in a desired configuration. A first die is picked up by the stacking tip. The first die is coated with an adhesive on the underside of the die. The first die is brought in contact with a second die via the stacking tip. The second die is coupled to the first die via the adhesive on the underside of the first die. The second die is coated with an adhesive coating on the underside of the die. The second die is then brought in contact with a third die via the stacking tip. The third die is coupled to the second die via the adhesive on the underside of the second die, and so forth. Die stacks are formed without being coupled to a substrate. The die stacks may be functionally and/or environmentally tested before attaching the die stack to a substrate.
    Type: Application
    Filed: February 3, 2004
    Publication date: August 12, 2004
    Inventors: Chad A. Cobbley, Timothy L. Jackson
  • Publication number: 20040121521
    Abstract: An apparatus and method of rerouting redistribution lines from an active surface of a semiconductor substrate to a back surface thereof and assembling and packaging individual and multiple semiconductor dice with such rerouted redistribution lines formed thereon. The semiconductor substrate includes one or more vias having conductive material formed therein and which extend from an active surface to a back surface of the semiconductor substrate. The redistribution lines are patterned on the back surface of the semiconductor substrate, extending from the conductive material in the vias to predetermined locations on the back surface of the semiconductor substrate that correspond with an interconnect pattern of another substrate for interconnection thereto.
    Type: Application
    Filed: December 10, 2003
    Publication date: June 24, 2004
    Inventors: Timothy L. Jackson, Tim E. Murphy