Patents by Inventor Timothy Michael Gross

Timothy Michael Gross has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230405974
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress ?I of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Application
    Filed: August 3, 2023
    Publication date: December 21, 2023
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Publication number: 20230399251
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to avoid the formation of haze during the treatment process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments selected to avoid the formation of haze during the treatment process.
    Type: Application
    Filed: August 29, 2023
    Publication date: December 14, 2023
    Inventors: Timothy Michael Gross, Jingshi Wu
  • Publication number: 20230391665
    Abstract: Embodiments of this disclosure pertain to glass articles that comprise a maximum CS magnitude (CSmax) of about 900 MPa or greater, a CS magnitude of 750 MPa or greater at a depth of about 5 micrometers, and a maximum CT magnitude (CTmax) disposed at a depth from the first major surface in a range from about 0.25t to about 0.75t. Embodiments of a curved glass article are also disclosed. In one or more embodiments, such curved glass articles include the first major concave surface comprising a maximum radius of curvature of about 100 mm or greater and a first maximum CS value (CSmax1) of greater than about 800 MPa, a second major convex surface comprising a second maximum CS value (CSmax2), wherein the CSmax2 is less than CSmax1. Embodiments of an automotive interior system including such curved glass articles and methods of making glass articles are also disclosed.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 7, 2023
    Inventors: Matthew Lee Black, Timothy Michael Gross, Khaled Layouni
  • Publication number: 20230391667
    Abstract: Glass-based articles that include a compresive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments.
    Type: Application
    Filed: August 24, 2023
    Publication date: December 7, 2023
    Inventors: Timothy Michael Gross, Adam Robert Sarafian, Jingshi Wu, Zheming Zheng
  • Publication number: 20230382784
    Abstract: A glass composition includes: from 55.0 mol % to 70.0 mol % SiO2; from 12.0 mol % to 20.0 mol % Al2O3; from 5.0 mol % to 15.0 mol % Li2O; and from 4.0 mol % to 15.0 mol % Na2O. The glass composition has the following relationships ?8.00 mol %?R2O+RO?Al2O3?B2O3?P2O5??1.75 mol %, 9.00?(SiO2+Al2O3+Li2O)/Na2O, and (Li2O+Al2O3+P2O5)/(Na2O+B2O3)?3.50. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Application
    Filed: August 14, 2023
    Publication date: November 30, 2023
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Publication number: 20230357071
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 9, 2023
    Inventors: Timothy Michael Gross, Georgiy M. Guryanov
  • Publication number: 20230339802
    Abstract: Alkali aluminosilicate glasses that are resistant to damage due to sharp impact and capable of fast ion exchange are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.
    Type: Application
    Filed: June 22, 2023
    Publication date: October 26, 2023
    Inventor: Timothy Michael Gross
  • Publication number: 20230312395
    Abstract: The disclosure relates to glass compositions with high coefficients of thermal expansion and low fracture toughness designed for thermal tempering. These glasses are ideally suited to produce a “dicing” pattern when thermally tempered, even when thin (<3 mm). Disclosed glasses have high thermal expansions at low and high temperatures to produce increased temper stresses once quenched, coupled with low fracture toughness which promotes crack bifurcation and enhanced frangibility. Methods of making such glasses are also provided.
    Type: Application
    Filed: May 31, 2023
    Publication date: October 5, 2023
    Inventors: Timothy Michael Gross, Peter Joseph Lezzi
  • Patent number: 11767257
    Abstract: Embodiments of this disclosuer pertain to glass articles that comprise a maximum CS magnitude (CSmax) of about 900 MPa or greater, a CS magnitude of 750 MPa or greater at a depth of about 5 micrometers, and a maximum CT magnitude (CTmax) disposed at a depth from the first major surface in a range from about 0.25 t to about 0.75 t. Embodiments of a curved glass article are also disclosed. In one or more embodiments, such curved glass articles include the first major concave surface comprising a maximum radius of curvature of about 100 mm or greater and a first maximum CS value (CSmax1) greater than about 800 MPa, a second major convex surface comprising a second maximum CS value (CSmax2), wherein the CSmax2 is less than CSmax1. Embodiments of an automotive interior system including such curved glass articles and methods of making glass articles are also disclosed.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: September 26, 2023
    Assignee: Corning Incorporated
    Inventors: Matthew Lee Black, Timothy Michael Gross, Khaled Layouni
  • Patent number: 11767255
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The glass-based substrates have compositions selected to avoid the formation of haze during the treatment process. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments selected to avoid the formation of haze during the treatment process.
    Type: Grant
    Filed: October 28, 2022
    Date of Patent: September 26, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Jingshi Wu
  • Patent number: 11767258
    Abstract: Glass-based articles that include a compressive stress layer extending from a surface of the glass-based article to a depth of compression are formed by exposing glass-based substrates to water vapor containing environments. The methods of forming the glass-based articles may include elevated pressures and/or multiple exposures to water vapor containing environments.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: September 26, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Adam Robert Sarafian, Jingshi Wu, Zheming Zheng
  • Patent number: 11766849
    Abstract: Methods and apparatus provide for: sourcing an ultra-thin glass sheet having first and second opposing major surfaces and perimeter edges therebetween, the glass sheet having a thickness between the first and second surfaces of less than about 400 microns; adhering at least one polymer layer directly or indirectly to at least one of the first and second surfaces of the glass sheet to form a laminated structure; and cutting the laminated structure using at least one of the following techniques: shear cutting, burst cutting, slit cutting, and crush cutting.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: September 26, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Patrick Joseph Cimo, Karthik Gopalakrishnan, Timothy Michael Gross, Glafiro Guerrero-Medina, Kiat Chyai Kang, Sue Camille Lewis
  • Patent number: 11767254
    Abstract: A glass composition includes: from 55.0 mol % to 70.0 mol % SiO2; from 12.0 mol % to 20.0 mol % Al2O3; from 5.0 mol % to 15.0 mol % Li2O; and from 4.0 mol % to 15.0 mol % Na2O. The glass composition has the following relationships ?8.00 mol %?R2O+RO?Al2O3?B2O3?P2O5??1.75 mol %, 9.00?(SiO2+Al2O3+Li2O)/Na2O, and (Li2O+Al2O3+P2O5)/(Na2O+B2O3)?3.50. The glass composition may be used in a glass article or a consumer electronic product.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: September 26, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Timothy Michael Gross, Xiaoju Guo, Peter Joseph Lezzi, Alexandra Lai Ching Kao Andrews Mitchell, Rostislav Vatchev Roussev
  • Publication number: 20230295423
    Abstract: Polymer-based portions comprise an index of refraction ranging from about 1.49 to about 1.55. In some embodiments, the polymer-based portion comprises the product of curing 45-75 wt % of a difunctional urethane-acrylate oligomer with 25-55 wt % of a difunctional cross-linking agent and optionally a reactive diluent. In some embodiments, the polymer-based portion comprises the product of curing 75-100 wt % of a reactive diluent and optionally one or more a difunctional urethane-acrylate oligomer and/or a difunctional cross-linking agent. Adhesives comprise an index of refraction ranging from about 1.49 to about 1.55. In some embodiments, the adhesive comprises the product of heating 10-35 wt % of a silane-hydride-terminated siloxane and 65-90 wt % of a vinyl-terminated siloxane. In some embodiments, the adhesive comprises the product of irradiating a thiol-containing siloxane and a photo-initiator with at least one wavelength of light that the photo-initiator is sensitive to.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Inventors: TARA MARIE BERLEUE, CHARLES BRANDENBURG, JUSTIN BERNARD BULT, MATTHEW JOHN DEJNEKA, SUSHMIT SUNIL KUMAR GOYAL, TIMOTHY MICHAEL GROSS, YUNFENG GU, YUHUI JIN, JENNY KIM, XINGHUA LI, JIAN LUO, KEVIN ROBERT MCCARTHY, WEIJUN NIU, TERRI LEE SINES-MELOCK, MICHAEL LESLEY SORENSEN, JONATHAN EARL WALTER, ARLIN LEE WEIKEL, LEI YUAN
  • Patent number: 11760685
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: September 19, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Patent number: 11752730
    Abstract: A stack assembly is provided that includes a glass layer having a thickness, a first and second primary surface and a compressive stress region extending from the second primary surface to a first depth; and a second layer coupled to the second primary surface. The glass layer is characterized by: an absence of failure when the layer is held at a bend radius from about 3 to 20 mm, a puncture resistance of greater than about 1.5 kgf when the second primary surface is supported by (i) an ˜25 ?m thick PSA and (ii) an ˜50 ?m thick PET layer, and the first primary surface is loaded with a stainless steel pin having a flat bottom with a 200 ?m diameter, a pencil hardness of at least 8H, and a neutral axis within the glass layer located between the second primary surface and half of the first thickness.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: September 12, 2023
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, James Ernest Webb
  • Patent number: 11751570
    Abstract: Embodiments of the present invention pertain to glass compositions, glasses and articles. The articles include an aluminosilicate glass, which may include P2O5 and K2O.
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: September 12, 2023
    Assignee: Corning Incorporated
    Inventors: Dana Craig Bookbinder, Gary Stephen Calabrese, Timothy Michael Gross, Dayue Jiang, Jianguo Wang
  • Patent number: 11745471
    Abstract: A glass element having a thickness from 25 ?m to 125 ?m, a first primary surface, a second primary surface, and a compressive stress region extending from the first primary surface to a first depth, the region defined by a compressive stress GI of at least about 100 MPa at the first primary surface. Further, the glass element has a stress profile such that it does not fail when it is subject to 200,000 cycles of bending to a target bend radius of from 1 mm to 20 mm, by the parallel plate method. Still further, the glass element has a puncture resistance of greater than about 1.5 kgf when the first primary surface of the glass element is loaded with a tungsten carbide ball having a diameter of 1.5 mm.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: September 5, 2023
    Assignee: Corning Incorporated
    Inventors: Theresa Chang, Polly Wanda Chu, Patrick Joseph Cimo, Adam James Ellison, Timothy Michael Gross, Guangli Hu, Nicholas James Smith, Butchi Reddy Vaddi, Natesan Venkataraman
  • Patent number: 11746045
    Abstract: A glass article comprising an alkali aluminosilicate glass that is formable by down-draw processes for example slot- and fusion-draw to thicknesses of 125 ?m or less and is capable of being chemically strengthened by ion-exchange to achieve a compressive stress at its surface of at least 950 MPa, in some embodiments at least about 1000 MPa, and in other embodiments at least about 1100 MPa. The high surface compressive stress allows the glass to retain net compression and thus contain surface flaws when the glass is subjected to bending around a tight radius. The glass may be used in foldable display applications.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: September 5, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, John Christopher Mauro
  • Patent number: 11724958
    Abstract: Alkali aluminosilicate glasses that are resistant to damage due to sharp impact and capable of fast ion exchange are provided. The glasses comprise at least 4 mol % P2O5 and, when ion exchanged, have a Vickers indentation crack initiation load of at least about 7 kgf.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: August 15, 2023
    Assignee: CORNING INCORPORATED
    Inventor: Timothy Michael Gross