Patents by Inventor Timothy Ruchti

Timothy Ruchti has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230053088
    Abstract: A system that synchronizes waveforms received over a network from one or more devices, such as medical devices. Because of network delays or losses, waveforms can arrive at varying rates and times. Precise post-synchronization of the received data, to within a few milliseconds, is needed for accurate analysis. Applications include automatic classification of waveforms, such as detection of myocardial infraction from heart monitor waveforms. Synchronization uses sequence numbers assigned by each device, but must also account for sequence number wraparounds. Waveforms may also be synchronized across devices, by calculating the bias between within-device synchronized times and a common time source or common disturbance. Waveform data may also be stored data in a database or data warehouse; embodiments may index the data using a key with a date-time prefix and a hash code suffix, to support distributed indexing while reducing the chance of hash collisions to a very small probability.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 16, 2023
    Applicant: Nihon Kohden Digital Health Solutions, Inc.
    Inventors: Harsh DHARWAD, Timothy RUCHTI, Paul HUGHES, Abel LIN
  • Publication number: 20230010946
    Abstract: A method for time-synchronizing waveforms from different patient monitors that does not require devices to have high-precision synchronized clocks or to be coupled to a triggering synchronization signal generator. Comparable signals may be obtained from different devices either by placing selected sensors from the devices in the same locations, or by filtering signals from one device to obtain a signal comparable to signals from another device. Filtering may for example transform waveforms into independent components and identify a component that matches a signal from another device. The comparable signals may then be transformed into frequency variation curves, such as time intervals between peak values, to facilitate detection of the time shift between the signals. Cross correlation of the frequency variation curves may be used to locate the precise time shift between the signals. Use of frequency variation curves may be more robust than directly comparing and correlating the original signals.
    Type: Application
    Filed: August 24, 2022
    Publication date: January 12, 2023
    Applicant: Nihon Kohden Digital Health Solutions, Inc.
    Inventors: Timothy RUCHTI, Joshua Andrew EHRENBERG, Abel LIN
  • Patent number: 11496232
    Abstract: A system that synchronizes waveforms received over a network from one or more devices, such as medical devices. Because of network delays or losses, waveforms can arrive at varying rates and times. Precise post-synchronization of the received data, to within a few milliseconds, is needed for accurate analysis. Applications include automatic classification of waveforms, such as detection of myocardial infraction from heart monitor waveforms. Synchronization uses sequence numbers assigned by each device, but must also account for sequence number wraparounds. Waveforms may also be synchronized across devices, by calculating the bias between within-device synchronized times and a common time source or common disturbance. Waveform data may also be stored data in a database or data warehouse; embodiments may index the data using a key with a date-time prefix and a hash code suffix, to support distributed indexing while reducing the chance of hash collisions to a very small probability.
    Type: Grant
    Filed: May 3, 2021
    Date of Patent: November 8, 2022
    Assignee: Nihon Kohden Digital Health Solutions, Inc.
    Inventors: Harsh Dharwad, Timothy Ruchti, Paul Hughes, Abel Lin
  • Publication number: 20220353000
    Abstract: A system that synchronizes waveforms received over a network from one or more devices, such as medical devices. Because of network delays or losses, waveforms can arrive at varying rates and times. Precise post-synchronization of the received data, to within a few milliseconds, is needed for accurate analysis. Applications include automatic classification of waveforms, such as detection of myocardial infraction from heart monitor waveforms. Synchronization uses sequence numbers assigned by each device, but must also account for sequence number wraparounds. Waveforms may also be synchronized across devices, by calculating the bias between within-device synchronized times and a common time source or common disturbance. Waveform data may also be stored data in a database or data warehouse; embodiments may index the data using a key with a date-time prefix and a hash code suffix, to support distributed indexing while reducing the chance of hash collisions to a very small probability.
    Type: Application
    Filed: May 3, 2021
    Publication date: November 3, 2022
    Applicant: Nihon Kohden Digital Health Solutions, Inc.
    Inventors: Harsh DHARWAD, Timothy RUCHTI, Paul HUGHES, Abel LIN
  • Patent number: 9585604
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described comprising a near-infrared source, a detector, and a photon transport system configured to direct photons from the source to the detector via an analyzer-sample optical interface. The photon transport system includes a dynamically position light directing unit used to, within a measurement time period for a single analyte concentration determination, change any of: radius, energy, intensity, position, incident angle, solid angle, and/or depth of penetration of a beam of photons entering skin of a subject.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: March 7, 2017
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Publication number: 20160249836
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described for spatially separating light for use in noninvasively determining an analyte concentration of a subject through use of detectors linked to multiple controlled sample illumination zone to sample detection zone distances. The controlled radial separation of illumination and detection zones yields reduced deviation in total observed optical pathlength and/or control of pathlengths in a desired tissue volume for each element of a set of detector elements. Performance using the discrete detection zones is enhanced using a combination of segmented spacers, arcs of detector elements, use of micro-optics, use of optical filters associated with individual detector elements, control of detector response shapes, and/or outlier analysis achievable through use of multiple separate and related observed signals of a detector array.
    Type: Application
    Filed: December 10, 2015
    Publication date: September 1, 2016
    Inventors: Sandeep Gulati, Timothy Ruchti, Kevin H. Hazen
  • Publication number: 20160242682
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described for spatially separating light having noninvasively probed a tissue volume into groups, which narrows standard deviations of probed tissue pathlength for each of the groups. Reduction in tissue pathlength uncertainty subsequently enhances noninvasive analyte concentration determination accuracy. Control of individual detector distance from an illumination zone in combination with control of area of a detection zone coupled to an individual detector yields intensity control of the various groups.
    Type: Application
    Filed: December 10, 2015
    Publication date: August 25, 2016
    Inventors: Sandeep Gulati, Timothy Ruchti, Kevin H. Hazen
  • Patent number: 9375170
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of sample illumination zones optically coupled to at least two optically stacked two-dimensional optical filter arrays. Sectioned pixels and/or zones of a detector array are optionally filtered for different light throughput and/or are passed through various pathlengths using the stacked two-dimensional optical filter arrays. Resulting pathlength resolved/wavelength controlled groups of spectra are subsequently analyzed to determine an analyte property.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: June 28, 2016
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Publication number: 20160151002
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described comprising a near-infrared source, a detector, and a photon transport system configured to direct photons from the source to the detector via an analyzer-sample optical interface. The photon transport system includes a dynamically position light directing unit used to, within a measurement time period for a single analyte concentration determination, change any of: radius, energy, intensity, position, incident angle, solid angle, and/or depth of penetration of a beam of photons entering skin of a subject.
    Type: Application
    Filed: November 17, 2015
    Publication date: June 2, 2016
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Patent number: 9351671
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using one or a plurality of sample illumination zones coupled to at least one two-dimensional detector array monitoring a plurality of detection zones. Control of illumination times and/or patterns along with selected detection zones yields pathlength resolved groups of spectra. Sectioned pixels and/or zones of the detector are optionally filtered for different light throughput as a function of wavelength. The pathlength resolved groups of spectra are subsequently analyzed to determine an analyte property. Optionally, in the mapping and/or collection phase, incident light is controllably varied in time in terms of any of: sample probe position, incident light solid angle, incident light angle, depth of focus, energy, intensity, and/or detection angle. Optionally, one or more physiological property and/or model property related to a physiological property is used in the analyte property determination.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: May 31, 2016
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Patent number: 9351672
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of sample illumination zones optically coupled to at least two optically stacked two-dimensional optical filter arrays. Sectioned pixels and/or zones of a detector array are optionally filtered for different light throughput and/or are passed through various pathlengths using the stacked two-dimensional optical filter arrays. Resulting pathlength resolved/wavelength controlled groups of spectra are subsequently analyzed to determine an analyte property.
    Type: Grant
    Filed: September 22, 2014
    Date of Patent: May 31, 2016
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Publication number: 20160058340
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of sample illumination zones optically coupled to at least two optically stacked two-dimensional optical filter arrays. Sectioned pixels and/or zones of a detector array are optionally filtered for different light throughput and/or are passed through various pathlengths using the stacked two-dimensional optical filter arrays. Resulting pathlength resolved/wavelength controlled groups of spectra are subsequently analyzed to determine an analyte property.
    Type: Application
    Filed: November 11, 2015
    Publication date: March 3, 2016
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen
  • Publication number: 20150045636
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of time resolved sample illumination zones coupled to at least one two-dimensional detector array monitoring a plurality of detection zones. Control of illumination times and/or patterns along with selected detection zones yields pathlength resolved groups of spectra. Sectioned pixels and/or zones of the detector are optionally filtered for different light throughput as a function of wavelength. The pathlength resolved groups of spectra are subsequently analyzed to determine an analyte property. Optionally, in the mapping and/or collection phase, incident light is controllably varied in time in terms of any of: sample probe position, incident light solid angle, incident light angle, depth of focus, energy, intensity, and/or detection angle. Optionally, one or more physiological property and/or model property related to a physiological property is used in the analyte property determination.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Inventors: Vlad Novotny, Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150041656
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a plurality of time resolved sample illumination zones coupled to at least one two-dimensional detector array monitoring a plurality of detection zones. Control of illumination times and/or patterns along with selected detection zones yields pathlength resolved groups of spectra. Sectioned pixels and/or zones of the detector are optionally filtered for different light throughput as a function of wavelength. The pathlength resolved groups of spectra are subsequently analyzed to determine an analyte property. Optionally, in the mapping and/or collection phase, incident light is controllably varied in time in terms of any of: sample probe position, incident light solid angle, incident light angle, depth of focus, energy, intensity, and/or detection angle. Optionally, one or more physiological property and/or model property related to a physiological property is used in the analyte property determination.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Inventors: Vlad Novotny, Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150015888
    Abstract: An analyzer apparatus and method of use thereof is described to dynamically irradiate a sample with incident light where the incident light is varied in time in terms of any of: position, radial position relative to a point of the skin of a subject, solid angle, incident angle, depth of focus, energy, and/or intensity. For example, the incident light is varied in radial position as a function of time relative to one or more of a sample site, a point on skin of the subject, a detection optic, and/or a sample volume observed by a detection system. The radially varied incident light is used to enhance and/or vary light probing the epidermis, the dermis, and/or the subcutaneous fat of the subject or of a group of subjects.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150018646
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using a sample mapping phase to establish one or more analyzer/software parameters used in a subsequent individual and/or group specific data collection phase. For example, in the sample mapping phase distance between incident and collected light is varied as a function of time for collected noninvasive spectra. Spectra collected in the sample mapping phase are analyzed to determine a physiological property of the subject, such as dermal thickness, hydration, collagen density, epidermal thickness, and/or subcutaneous fat depth. Using the physiological property or measure thereof, the analyzer is optically reconfigured for the individual to yield subsequent spectra having enhanced features for noninvasive analyte property determination.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150018644
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described comprising a near-infrared source, a non-uniform detector array, and a photon transport system configured to direct photons from the source to the detector via an analyzer-sample optical interface. The non-uniform detector array provides a multitude of distinguishable optical pathlengths, couples to a plurality of optical transmission filters, couples to a plurality of light directing micro-optics, and/or couples to an array of light-emitting diodes.
    Type: Application
    Filed: October 1, 2014
    Publication date: January 15, 2015
    Inventors: Sandeep Gulati, Timothy Ruchti, Alan Abul-Haj, Thomas George, Kevin Hazen
  • Publication number: 20150018642
    Abstract: An analyzer apparatus and method of use thereof is configured to dynamically interrogate a sample. For example, an analyzer using light interrogates a tissue sample using a temporal resolution system on a time scale of less than about one hundred nanoseconds. Optionally, near-infrared photons are introduced to a sample with a known illumination zone to detection zone distance allowing calculation of parameters related to photon pathlength in tissue and/or molar absorptivity of an individual or group through the use of the speed of light and/or one or more indices of refraction. Optionally, more accurate estimation of tissue properties are achieved through use of: knowledge of incident photon angle relative to skin, angularly resolved detector positions, anisotropy, skin temperature, environmental information, information related to contact pressure, blood glucose concentration history, and/or a skin layer thickness, such as that of the epidermis and dermis.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Inventors: Sandeep Gulati, Thomas George, Timothy Ruchti, Alan Abul-Haj, Kevin H. Hazen
  • Publication number: 20150011850
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described comprising a near-infrared source, a detector, and a photon transport system configured to direct photons from the source to the detector via an analyzer-sample optical interface. The photon transport system includes a dynamically position light directing unit used to, within a measurement time period for a single analyte concentration determination, change any of: radius, energy, intensity, position, incident angle, solid angle, and/or depth of penetration of a beam of photons entering skin of a subject.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen, Vlad Novotny
  • Publication number: 20150011848
    Abstract: A noninvasive analyzer apparatus and method of use thereof is described using one or a plurality of sample illumination zones coupled to at least one two-dimensional detector array monitoring a plurality of detection zones. Control of illumination times and/or patterns along with selected detection zones yields pathlength resolved groups of spectra. Sectioned pixels and/or zones of the detector are optionally filtered for different light throughput as a function of wavelength. The pathlength resolved groups of spectra are subsequently analyzed to determine an analyte property. Optionally, in the mapping and/or collection phase, incident light is controllably varied in time in terms of any of: sample probe position, incident light solid angle, incident light angle, depth of focus, energy, intensity, and/or detection angle. Optionally, one or more physiological property and/or model property related to a physiological property is used in the analyte property determination.
    Type: Application
    Filed: September 22, 2014
    Publication date: January 8, 2015
    Inventors: Timothy Ruchti, Alan Abul-Haj, Kevin Hazen