Patents by Inventor Timothy W. Scott

Timothy W. Scott has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11957893
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Brad C. Tischendorf, John E. Kast, Thomas P. Miltich, Gordon O. Munns, Randy S. Roles, Craig L. Schmidt, Joseph J. Viavattine, Christian S. Nielsen, Prabhakar A. Tamirisa, Anthony M. Chasensky, Markus W. Reiterer, Chris J. Paidosh, Reginald D. Robinson, Bernard Q. Li, Erik R. Scott, Phillip C. Falkner, Xuan K. Wei, Eric H. Bonde, David A. Dinsmoor, Duane L. Bourget, Forrest C M Pape, Gabriela C. Molnar, Joel A. Anderson, Michael J. Ebert, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Timothy J. Denison, Todd V. Smith
  • Patent number: 11957894
    Abstract: A neuromodulation therapy is delivered via at least one electrode implanted subcutaneously and superficially to a fascia layer superficial to a nerve of a patient. In one example, an implantable medical device is deployed along a superficial surface of a deep fascia tissue layer superficial to a nerve of a patient. Electrical stimulation energy is delivered to the nerve through the deep fascia tissue layer via implantable medical device electrodes.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: April 16, 2024
    Assignee: Medtronic, Inc.
    Inventors: Anthony M. Chasensky, Bernard Q. Li, Brad C. Tischendorf, Chris J. Paidosh, Christian S. Nielsen, Craig L. Schmidt, David A. Dinsmoor, Duane L. Bourget, Eric H. Bonde, Erik R. Scott, Forrest C M Pape, Gabriela C. Molnar, Gordon O. Munns, Joel A. Anderson, John E. Kast, Joseph J. Viavattine, Markus W. Reiterer, Michael J. Ebert, Phillip C. Falkner, Prabhakar A. Tamirisa, Randy S. Roles, Reginald D. Robinson, Richard T. Stone, Shawn C. Kelley, Stephen J. Roddy, Thomas P. Miltich, Timothy J. Denison, Todd V. Smith, Xuan K. Wei
  • Patent number: 11912545
    Abstract: A wireless hoist system including a first hoist device having a first motor and a first wireless transceiver and a second hoist device having a second motor and a second wireless transceiver. The wireless hoist system includes a controller in wireless communication with the first wireless transceiver and the second wireless. The controller is configured to receive a user input and determine a first operation parameter and a second operation parameter based on the user input. The controller is also configured to provide, wirelessly, a first control signal indicative of the first operation parameter to the first hoist device and provide, wirelessly, a second control signal indicative of the second operation parameter to the second hoist device. The first hoist device operates based on the first control signal and the second hoist device operates based on the second control signal.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 27, 2024
    Assignee: Milwaukee Electric Tool Corporation
    Inventors: Matthew Post, Gareth Mueckl, Matthew N. Thurin, Joshua D. Widder, Timothy J. Bartlett, Patrick D. Gallagher, Jarrod P. Kotes, Karly M. Schober, Kenneth W. Wolf, Terry L. Timmons, Mallory L. Marksteiner, Jonathan L. Lambert, Ryan A. Spiering, Jeremy R. Ebner, Benjamin A. Smith, James Wekwert, Brandon L. Yahr, Troy C. Thorson, Connor P. Sprague, John E. Koller, Evan M. Glanzer, John S. Scott, William F. Chapman, III, Timothy R. Obermann
  • Patent number: 7032462
    Abstract: A mass flow measurement device includes a flow sensor tube and a housing having the flow sensor tube situated therein. A drive device is positioned outside the housing for vibrating the flow sensor tube, and at least one pick off sensor is situated relative to the flow sensor tube so as to measure the twist in the flow sensor tube due to Coriolis force. Another mass flow measurement device includes an enclosure having first and second ends. A first sealing member is situated relative to the enclosure first end and a flow body such that the flow body and the first end are connected in a sealed manner. A second sealing member is situated relative to the enclosure second end and a user interface assembly such that the user interface assembly and the second end are connected in a sealed manner.
    Type: Grant
    Filed: February 12, 2003
    Date of Patent: April 25, 2006
    Assignee: Emerson Electric Co.
    Inventors: Michael J. Barger, Joseph C. Dille, Timothy W. Scott, Jeffrey L. Whiteley
  • Patent number: 6769301
    Abstract: A Coriolis mass flow sensor includes a flow sensor tube, a drive device situated relative to the flow sensor tube so as to cause the flow sensor tube to vibrate, and capacitance displacement gauges situated relative to the flow sensor tube so as to measure the twist in the flow sensor tube due to Coriolis force. In specific embodiments, electromagnetic, electrostatic, acoustic, and/or piezoelectric drives are used to vibrate the flow sensor tube. In still further embodiments, piezoelectric devices are used both to vibrate the flow sensor tube and measure the twist in the flow sensor tube. In accordance with certain embodiments of the invention, the Coriolis mass flow controller further includes an integrated flow control device adapted to receive fluid from the flow sensor tube and provide flow control.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: August 3, 2004
    Assignee: Emerson Electric Co.
    Inventors: Michael J. Barger, Joseph C. Dille, Jeffrey L. Whiteley, Timothy W. Scott
  • Patent number: 6748813
    Abstract: A Coriolis mass flow sensor includes a flow tube, a light source positioned adjacent a first side of the flow tube and a light detector positioned adjacent a second side of the flow tube. A drive device is operatively situated relative to the flow tube for vibrating the flow tube, such that the flow tube moves through a path defined between the light source and the light detector. In other aspects of the invention, a Coriolis mass flow sensor includes a flow tube and a frame having the flow tube mounted thereon. A drive device is operatively situated relative to the frame for vibrating the frame and at least one pick off sensor is situated relative to the flow tube so as to measure the twist in the flow tube due to Coriolis force. Other aspects of the invention concern a straight-tube Coriolis mass flow sensor. A flexible flow tube defines a generally linear flow path.
    Type: Grant
    Filed: August 18, 2000
    Date of Patent: June 15, 2004
    Assignee: Emerson Electric Company
    Inventors: Michael J. Barger, Joseph C. Dille, Timothy W. Scott, Jeffrey L. Whiteley
  • Patent number: 6606917
    Abstract: A mass flow measurement and control device includes an enclosure with a Coriolis mass flowmeter situated therein. The Coriolis mass flowmeter has a flow-tube made of a high-purity plastic material, a driver coupled to the flow tube for vibrating the flow tube, and a pickoff coupled to the flow tube for sensing Coriolis deflections of the vibrating flow tube. A pinch valve includes an elastomeric tube made of a high-purity plastic material in fluid communication with the flow tube. An actuator with a ram operatively connected thereto is situated adjacent the elastomeric tube, and a reference surface is positioned generally opposite the ram such that the elastomeric tube is squeezable between the ram and the reference surface. A controller may also be provided, which receives an output signal from the Coriolis flowmeter and provides a control output signal to the pinch valve actuator in response to the flowmeter output signal and a setpoint signal.
    Type: Grant
    Filed: November 26, 2001
    Date of Patent: August 19, 2003
    Assignee: Emerson Electric Co.
    Inventors: Wesley E. Sund, Daniel P. McNulty, Timothy W. Scott, Matthew G. Wheeler, Jeffrey L. Whiteley, Joseph C. Dille, Michael J. Barger, Gary E. Pawlas
  • Publication number: 20030140712
    Abstract: A mass flow measurement device includes a flow sensor tube and a housing having the flow sensor tube situated therein. A drive device is positioned outside the housing for vibrating the flow sensor tube, and at least one pick off sensor is situated relative to the flow senior tube so as to measure the twist in the flow sensor tube due to Coriolis force Another mass flow measurement device includes an enclosure having first and second ends. A first sealing member is situated relative to the enclosure first end and a flow body such that the flow body and the first end are connected in a sealed manner. A second sealing member is situated relative to the enclosure second end and a user interface assembly such that the user interface assembly and the second end are connected in a sealed manner.
    Type: Application
    Filed: February 12, 2003
    Publication date: July 31, 2003
    Applicant: Emerson Electric Co.
    Inventors: Michael J. Barger, Joseph C. Dille, Timothy W. Scott, Jeffrey L. Whiteley
  • Publication number: 20030131668
    Abstract: A Coriolis mass flow sensor includes a flow sensor tube, a drive device situated relative to the flow sensor tube so as to cause the flow sensor tube to vibrate, and capacitance displacement gauges situated relative to the flow sensor tube so as to measure the twist in the flow sensor tube due to Coriolis force. In specific embodiments, electromagnetic, electrostatic, acoustic, and/or piezoelectric drives are used to vibrate the flow sensor tube. In still further embodiments, piezoelectric devices are used both to vibrate the flow sensor tube and measure the twist in the flow sensor tube. In accordance with certain embodiments of the invention, the Coriolis mass flow controller further includes an integrated flow control device adapted to receive fluid from the flow sensor tube and provide flow control.
    Type: Application
    Filed: January 27, 2003
    Publication date: July 17, 2003
    Applicant: Emerson Electric Co.
    Inventors: Michael J. Barger, Joseph C. Dille, Jeffrey L. Whiteley, Timothy W. Scott
  • Publication number: 20030097884
    Abstract: A mass flow measurement and control device includes an enclosure with a Coriolis mass flowmeter situated therein. The Coriolis mass flowmeter has a flow-tube made of a high-purity plastic material, a driver coupled to the flow tube for vibrating the flow tube, and a pickoff coupled to the flow tube for sensing Coriolis deflections of the vibrating flow tube. A pinch valve includes an elastomeric tube made of a high-purity plastic material in fluid communication with the flow tube. An actuator with a ram operatively connected thereto is situated adjacent the elastomeric tube, and a reference surface is positioned generally opposite the ram such that the elastomeric tube is squeezable between the ram and the reference surface. A controller may also be provided, which receives an output signal from the Coriolis flowmeter and provides a control output signal to the pinch valve actuator in response to the flowmeter output signal and a setpoint signal.
    Type: Application
    Filed: November 26, 2001
    Publication date: May 29, 2003
    Inventors: Wesley E. Sund, Daniel P. McNulty, Timothy W. Scott, Matthew G. Wheeler, Jeffrey L. Whiteley, Joseph C. Dille, Michael J. Barger, Gary E. Pawlas
  • Patent number: 6526839
    Abstract: A capacitive pick off sensor for a mass flow measurement device is disclosed. The mass flow measurement device includes a flow sensor tube and a drive device for vibrating the flow sensor tube. The capacitive pick off sensor includes at least one conductive plate connectable to a first voltage potential and adapted to be situated adjacent the flow sensor tube which is connected to a second voltage potential. The conductive plate is positioned relative to the flow sensor tube so as to define a gap therebetween The capacitance between the conductive plate and the flow sensor tube varies due to the relative motion of the conductive plate and the flow sensor tube when the flow sensor tube is vibrated. In other aspects of the present invention, the flow sensor tube is situated in a housing and the drive device is positioned outside the housing for vibrating the flow sensor tube.
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: March 4, 2003
    Assignee: Emerson Electric Co.
    Inventors: Michael J. Barger, Joseph C. Dille, Timothy W. Scott, Jeffrey L. Whiteley
  • Patent number: 6513392
    Abstract: A Coriolis mass flow sensor includes a flow sensor tube, a drive device situated relative to the flow sensor tube so as to cause the flow sensor tube to vibrate, and capacitance displacement gauges situated relative to the flow sensor tube so as to measure the twist in the flow sensor tube due to Coriolis force. In specific embodiments, electromagnetic, electrostatic, acoustic, and/or piezoelectric drives are used to vibrate the flow sensor tube. In still further embodiments, piezoelectric devices are used both to vibrate the flow sensor tube and measure the twist in the flow sensor tube. In accordance with certain embodiments of the invention, the Coriolis mass flow controller further includes an integrated flow control device adapted to receive fluid from the flow sensor tube and provide flow control.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: February 4, 2003
    Assignee: Emerson Electric Co.
    Inventors: Michael J. Barger, Joseph C. Dille, Jeffrey L. Whiteley, Timothy W. Scott
  • Patent number: D436876
    Type: Grant
    Filed: November 1, 1999
    Date of Patent: January 30, 2001
    Assignee: Micro Motion, Inc.
    Inventors: Michael J. Barger, Joseph C. Dille, Abe Liebson, Jeffrey L. Whiteley, Timothy W. Scott