Patents by Inventor Tina M. Trnka

Tina M. Trnka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9403854
    Abstract: The invention pertains to the use of Group 8 transition metal carbene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand are used to catalyze cross-metathesis reactions to provide a variety of substituted and functionalized olefins, including phosphonate-substituted olefins, directly halogenated olefins, 1,1,2-trisubstituted olefins, and quaternary allylic olefins. The invention further provides a method for creating functional diversity using the aforementioned complexes to catalyze cross-metathesis reactions of a first olefinic reactant, which may or may not be substituted with a functional group, with each of a plurality of different olefinic reactants, which may or may not be substituted with functional groups, to give a plurality of structurally distinct olefinic products.
    Type: Grant
    Filed: October 16, 2013
    Date of Patent: August 2, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Robert H. Grubbs, Arnab K. Chatterjee, Tae-Lim Choi, Steven D. Goldberg, Jennifer A. Love, John P. Morgan, Daniel P. Sanders, Matthias Scholl, F. Dean Toste, Tina M. Trnka
  • Publication number: 20140288319
    Abstract: The invention pertains to the use of Group 8 transition metal carbene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand are used to catalyze cross-metathesis reactions to provide a variety of substituted and functionalized olefins, including phosphonate-substituted olefins, directly halogenated olefins, 1,1,2-trisubstituted olefins, and quaternary allylic olefins. The invention further provides a method for creating functional diversity using the aforementioned complexes to catalyze cross-metathesis reactions of a first olefinic reactant, which may or may not be substituted with a functional group, with each of a plurality of different olefinic reactants, which may or may not be substituted with functional groups, to give a plurality of structurally distinct olefinic products.
    Type: Application
    Filed: October 16, 2013
    Publication date: September 25, 2014
    Applicant: California Institute Of Technology
    Inventors: Robert H. GRUBBS, Arnab K. CHATTERJEE, Tae-Lim CHOI, Steven D. GOLDBERG, Jennifer A. LOVE, John P. MORGAN, Daniel P. SANDERS, Matthias SCHOLL, F. Dean TOSTE, Tina M. TRNKA
  • Patent number: 7598330
    Abstract: The invention pertains to the use of Group 8 transition metal alkylidene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand and at least one electron donor ligand in the form of a heterocyclic group are used to catalyze cross-metathesis reactions to provide a olefin products that are directly substituted with an electron-withdrawing group.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: October 6, 2009
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, John P. Morgan, Jennifer A. Love, Tina M. Trnka
  • Patent number: 6818586
    Abstract: The present invention relates to novel hexacoordinated metathesis catalysts and to methods for making and using the same. The inventive catalysts are of the formula wherein: M is ruthenium or osmium; X and X1 are the same or different and are each independently an anionic ligand; L, L1′ and L2 are the same or different and are each independently a neutral electron donor ligand; and, R and R1 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, C1-C20 alkylsulfonyl and C1-C20 alkylsulfinyl and silyl.
    Type: Grant
    Filed: June 14, 2002
    Date of Patent: November 16, 2004
    Assignees: Cymetech, LLP, California Institute of Technology
    Inventors: Robert H. Grubbs, Melanie S. Sanford, Jason L. Moore, Jennifer A. Love, Tina M. Trnka
  • Patent number: 6759537
    Abstract: The present invention relates to novel hexacoordinated metathesis catalysts and to methods for making and using the same. The inventive catalysts are of the formula wherein: M is ruthenium or osmium; X and X1 are the same or different and are each independently an anionic ligand; L, L1′ and L2 are the same or different and are each independently a neutral electron donor ligand, wherein at least one L, L1′ and L2 is an N-heterocyclic carbene ligand; and, R and R1 are each independently hydrogen or a substituent selected from the group consisting of C1-C20 alkyl, C2-C20 alkenyl, C2-C20 alkynyl, aryl, C1-C20 carboxylate, C1-C20 alkoxy, C2-C20 alkenyloxy, C2-C20 alkynyloxy, aryloxy, C2-C20 alkoxycarbonyl, C1-C20 alkylthio, C1-C20 alkylsulfonyl and C1-C20 alkylsulfinyl.
    Type: Grant
    Filed: December 14, 2001
    Date of Patent: July 6, 2004
    Assignees: California Institute of Technology, Cymetech, LLP
    Inventors: Robert H. Grubbs, Jennifer A. Love, Melanie S. Sanford, Tina M. Trnka, Jason L. Moore
  • Publication number: 20040097745
    Abstract: The invention pertains to the use of Group 8 transition metal carbene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand are used to catalyze cross-metathesis reactions to provide a variety of substituted and functionalized olefins, including phosphonate-substituted olefins, directly halogenated olefins, 1,1,2-trisubstituted olefins, and quaternary allylic olefins. The invention further provides a method for creating functional diversity using the aforementioned complexes to catalyze cross-metathesis reactions of a first olefinic reactant, which may or may not be substituted with a functional group, with each of a plurality of different olefinic reactants, which may or may not be substituted with functional groups, to give a plurality of structurally distinct olefinic products.
    Type: Application
    Filed: April 1, 2002
    Publication date: May 20, 2004
    Inventors: Robert H. Grubbs, Arnab K. Chatterjee, Tae-Lim Choi, Steven D. Goldberg, Jennifer A. Love, John P. Morgan, Daniel P. Sanders, Matthias Scholl, F. Dean Toste, Tina M. Trnka
  • Publication number: 20030236427
    Abstract: The invention pertains to the use of Group 8 transition metal alkylidene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand and at least one electron donor ligand in the form of a heterocyclic group are used to catalyze cross-metathesis reactions to provide a olefin products that are directly substituted with an electron-withdrawing group.
    Type: Application
    Filed: April 7, 2003
    Publication date: December 25, 2003
    Inventors: Robert H. Grubbs, John P. Morgan, Jennifer A. Love, Tina M. Trnka
  • Patent number: 6624265
    Abstract: The invention discloses ruthenium alkylidene complexes of the type (PCy3)(L)Cl2Ru(CHPh), where L is a triazolylidene ligand of the general formula: These catalysts have been found to be considerably more active for olefin metathesis at elevated temperatures than the parent catalyst (PCy3)2Cl2Ru(CHPh)(2). For example, complex 14 (L=1,3,4-triphenyl-4.5-dihydro-1H-triazol-5-ylidene) is able to catalyze the ring-closing metathesis of substituted dienes to give tetra-substituted cyclic olefins in good yield. In addition, this complex demonstrates the analogous stability towards oxygen and moisture exhibited by ruthenium alkylidene 2.
    Type: Grant
    Filed: January 25, 2001
    Date of Patent: September 23, 2003
    Assignee: California Institute of Technology
    Inventors: Robert H. Grubbs, Tina M. Trnka
  • Publication number: 20030100776
    Abstract: The invention pertains to the use of Group 8 transition metal carbene complexes as catalysts for olefin cross-metathesis reactions. In particular, ruthenium and osmium alkylidene complexes substituted with an N-heterocyclic carbene ligand are used to catalyze cross-metathesis reactions to provide a variety of substituted and functionalized olefins, including phosphonate-substituted olefins, directly halogenated olefins, 1,1,2-trisubstituted olefins, and quaternary allylic olefins. The invention further provides a method for creating functional diversity using the aforementioned complexes to catalyze cross-metathesis reactions of a first olefinic reactant, which may or may not be substituted with a functional group, with each of a plurality of different olefinic reactants, which may or may not be substituted with functional groups, to give a plurality of structurally distinct olefinic products.
    Type: Application
    Filed: April 1, 2002
    Publication date: May 29, 2003
    Inventors: Robert H. Grubbs, Arnab K. Chatterjee, Tae-Lim Choi, Steven D. Goldberg, Jennifer A. Love, John P. Morgan, Daniel P. Sanders, Matthias Scholl, F. Dean Toste, Tina M. Trnka
  • Publication number: 20030069374
    Abstract: The present invention relates to novel hexacoordinated metathesis catalysts and to methods for making and using the same.
    Type: Application
    Filed: June 14, 2002
    Publication date: April 10, 2003
    Applicant: California Institute of Technology and Cymetech, LLP
    Inventors: Robert H. Grubbs, Melanie S. Sanford, Jason L. Moore, Jennifer A. Love, Tina M. Trnka
  • Publication number: 20020177710
    Abstract: The present invention relates to novel hexacoordinated metathesis catalysts and to methods for making and using the same.
    Type: Application
    Filed: December 14, 2001
    Publication date: November 28, 2002
    Applicant: California Institute Technology; Cymetech, LLC
    Inventors: Robert H. Grubbs, Jennifer A. Love, Melanie S. Sanford, Tina M. Trnka, Jason L. Moore
  • Publication number: 20020013473
    Abstract: The invention discloses ruthenium alkylidene complexes of the type (PCy3)(L)Cl2Ru(CHPh), where L is a triazolylidene ligand of the general formula: 1
    Type: Application
    Filed: January 25, 2001
    Publication date: January 31, 2002
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Robert H. Grubbs, Tina M. Trnka