Patents by Inventor Tingyue Gu

Tingyue Gu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9034812
    Abstract: Compositions and methods for treating biofilm formation and growth on a substrate are provided. The composition comprises 1 ppb to 1,000 ppm of at least one D-amino acid and 1 ppm to 60,000 ppm of at least one biocide. The method comprises contacting the substrate with 1 ppb to 1,000 ppm of at least one D-amino acid and 1 ppm to 60,000 ppm of at least one biocide. The compositions and methods are effective for preventing, reducing or eliminating biofilm formation or biofilm growth or both, as well as eradicating established, recalcitrant biofilms, particularly biofilms comprising sulfate reducing bacteria that are known to cause microbiologically influenced corrosion, biofouling, or both.
    Type: Grant
    Filed: August 26, 2012
    Date of Patent: May 19, 2015
    Assignee: Ohio University
    Inventors: Tingyue Gu, Dake Xu
  • Publication number: 20140194335
    Abstract: Compositions and methods for treating biofilm formation and growth on a substrate are provided. The composition comprises 1 ppb to 1,000 ppm of at least one D-amino acid and 1 ppm to 60,000 ppm of at least one biocide. The method comprises contacting the substrate with 1 ppb to 1,000 ppm of at least one D-amino acid and 1 ppm to 60,000 ppm of at least one biocide. The compositions and methods are effective for preventing, reducing or eliminating biofilm formation or biofilm growth or both, as well as eradicating established, recalcitrant biofilms, particularly biofilms comprising sulfate reducing bacteria that are known to cause microbiologically influenced corrosion, biofouling, or both.
    Type: Application
    Filed: August 26, 2012
    Publication date: July 10, 2014
    Applicant: OHIO UNIVERSITY
    Inventors: Tingyue Gu, Dake Xu
  • Publication number: 20140048424
    Abstract: Methods and devices for the detection of corrosive biofilms and microbiologically influenced (MIC) corrosion rates are based upon the electrogenicity of the biofilms. The device may comprise a passive sensor having at least one first electrode, at least one second electrode, and an external circuit for electrically connecting the first electrode to the second electrode. At least one of the first electrode and the second electrode is capable of being at least partially coated by a biofilm. A sustainable electrical characteristic, such as voltage and current, generated when the first electrode and the second electrode are electrically connected and exposed to at least one medium indicates that the biofilm partially coating at least one of the first electrode and the second electrode is electrogenic, and thus corrosive. Special electrode and sensor designs are needed for the implementation of online and offline biofilm sensors.
    Type: Application
    Filed: April 27, 2012
    Publication date: February 20, 2014
    Applicant: OHIO UNIVERSITY
    Inventor: Tingyue Gu
  • Publication number: 20130008801
    Abstract: Methods and compositions for applications related to the microbiologically influenced corrosion (MIC) are provided. MIC is becoming increasingly important, especially to the oil and gas industry due to water flooding practice and aging pipelines. The lack of understanding of the fundamental mechanisms in MIC have greatly hindered the development of reliable prediction and new mitigation methods. This disclosure demonstrates how a biocatalytic cathodic sulfate reduction (BCSR) theory, together with bioenergetics, electrochemical kinetics, and mass transfer, can be used with regard to MIC. The discovery of MIC promoters (that are electron mediators) allows for a new detection tool for more accurate assessment of MIC pitting, and potential new mitigation methods that targets the promoters or microorganisms that secrete these promoters. An MFC device to detect the presence of MIC promoters is provided.
    Type: Application
    Filed: March 16, 2011
    Publication date: January 10, 2013
    Inventor: Tingyue Gu