Patents by Inventor Tit Meng Lim

Tit Meng Lim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8080411
    Abstract: Disposable units in current use for performing PCR are limited by their heat block ramping rates and by the thermal diffusion delay time through the plastic wall as well as by the sample itself. This limitation has been overcome by forming a disposable plastic chip using a simple deformation process wherein one or more plastic sheets are caused, through hydrostatic pressure, to conform to the surface of a suitable mold. After a given disposable chip has been filled with liquid samples, it is brought into close contact with an array of heating blocks that seals each sample within its own chamber, allowing each sample to then be heat treated as desired.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: December 20, 2011
    Assignees: Agency for Science, Technology and Research, National University of Singapore
    Inventors: Yubo Miao, Yu Chen, Tit Meng Lim, Chew Kiat Heng
  • Publication number: 20090053801
    Abstract: Disposable units in current use for performing PCR are limited by their heat block ramping rates and by the thermal diffusion delay time through the plastic wall as well as by the sample itself. This limitation has been overcome by forming a disposable plastic chip using a simple deformation process wherein one or more plastic sheets are caused, through hydrostatic pressure, to conform to the surface of a suitable mold. After a given disposable chip has been filled with liquid samples, it is brought into close contact with an array of heating blocks that seals each sample within its own chamber, allowing each sample to then be heat treated as desired.
    Type: Application
    Filed: October 20, 2008
    Publication date: February 26, 2009
    Inventors: Yubo Miao, Yu Chen, Tit Meng Lim, Chew Kiat Heng
  • Patent number: 7442542
    Abstract: Disposable units in current use for performing PCR are limited by their heat block ramping rates and by the thermal diffusion delay time through the plastic wall as well as by the sample itself. This limitation has been overcome by forming a disposable plastic chip using a simple deformation process wherein one or more plastic sheets are caused, through hydrostatic pressure, to conform to the surface of a suitable mold. After a given disposable chip has been filled with liquid samples, it is brought into close contact with an array of heating blocks that seals each sample within its own chamber, allowing each sample to then be heat treated as desired.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: October 28, 2008
    Assignees: Agency for Science, Technology and Research, National University of Singapore
    Inventors: Yubo Miao, Yu Chen, Tit Meng Lim, Chew Kiat Heng
  • Publication number: 20040191896
    Abstract: Disposable units in current use for performing PCR are limited by their heat block ramping rates and by the thermal diffusion delay time through the plastic wall as well as by the sample itself. This limitation has been overcome by forming a disposable plastic chip using a simple deformation process wherein one or more plastic sheets are caused, through hydrostatic pressure, to conform to the surface of a suitable mold. After a given disposable chip has been filled with liquid samples, it is brought into close contact with an array of heating blocks that seals each sample within its own chamber, allowing each sample to then be heat treated as desired.
    Type: Application
    Filed: July 3, 2003
    Publication date: September 30, 2004
    Applicant: Agency For Science, Technology And Research
    Inventors: Yubo Miao, Yu Chen, Tit Meng Lim, Chew Kiat Heng
  • Patent number: 6716661
    Abstract: Formation of micro-fluidic systems is normally achieved using a multi-wafer fabrication procedure. The present invention teaches how a complete micro-fluidic system can be implemented on a single chip. The invention uses only dry etch processes to form micro-chambers. In particular, it makes use of deep reactive ion etching whereby multiple trenches of differing depths may be formed simultaneously. Buried micro-chambers are formed by isotropically increasing trench widths using an etchant that does not attack the mask so the trenches grow wider beneath the surface until they merge. Deposition of a dielectric layer over the trenches allows some trenches to be sealed and some to be left open. Micro-pumps are formed by including in the micro-chamber roof a layer that is used to change chamber volume either through electrostatically induced motion or through thermal mismatch as a result of its being heated.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: April 6, 2004
    Assignees: Institute of Microelectronics, National University of Singapore
    Inventors: Quanbo Zou, Yu Chen, Janak Singh, Tit Meng Lim, Tie Yan, Chew Kiat Heng
  • Publication number: 20030215972
    Abstract: Formation of micro-fluidic systems is normally achieved using a multi-wafer fabrication procedure. The present invention teaches how a complete micro-fluidic system can be implemented on a single chip. The invention uses only dry etch processes to form micro-chambers. In particular, it makes use of deep reactive ion etching whereby multiple trenches of differing depths may be formed simultaneously. Buried micro-chambers are formed by isotropically increasing trench widths using an etchant that does not attack the mask so the trenches grow wider beneath the surface until they merge. Deposition of a dielectric layer over the trenches allows some trenches to be sealed and some to be left open. Micro-pumps are formed by including in the micro-chamber roof a layer that is used to change chamber volume either through electrostatically induced motion or through thermal mismatch as a result of its being heated.
    Type: Application
    Filed: May 16, 2002
    Publication date: November 20, 2003
    Inventors: Quanbo Zou, Yu Chen, Janak Singh, Tit Meng Lim, Tie Yan, Chew Kiat Heng
  • Patent number: 6521447
    Abstract: The invention describes a thermal cycler which permits simultaneous treatment of multiple individual samples in independent thermal protocols, so as to implement large numbers of DNA experiments simultaneously in a short time. The chamber is thermally isolated from its surroundings, heat flow in and out of the unit being limited to one or two specific heat transfer areas. All heating elements are located within these transfer areas and at least one temperature sensor per heating element is positioned close by. Fluid bearing channels that facilitate sending fluid into, and removing fluid from, the chamber are provided. The chambers may be manufactured as integrated arrays to form units in which each cycler chamber has independent temperature and fluid flow control. Two embodiments of the invention are described together with a process for manufacturing them.
    Type: Grant
    Filed: July 3, 2002
    Date of Patent: February 18, 2003
    Assignee: Institute of Microelectronics
    Inventors: Quanbo Zou, Uppili Sridhar, Yu Chen, Tit Meng Lim, Emmanuel Selvanayagam Zachariah, Tie Yan
  • Patent number: 6509186
    Abstract: The invention describes a thermal cycler which permits simultaneous treatment of multiple individual samples in independent thermal protocols, so as to implement large numbers of DNA experiments simultaneously in a short time. The chamber is thermally isolated from its surroundings, heat flow in and out of the unit being limited to one or two specific heat transfer areas. All heating elements are located within these transfer areas and at least one temperature sensor per heating element is positioned close by. Fluid bearing channels that facilitate sending fluid into, and removing fluid from, the chamber are provided. The chambers may be manufactured as integrated arrays to form units in which each cycler chamber has independent temperature and fluid flow control. Two embodiments of the invention are described together with a process for manufacturing them as well as two schemes for making connections to the outside world.
    Type: Grant
    Filed: May 1, 2001
    Date of Patent: January 21, 2003
    Assignee: Institute of Microelectronics
    Inventors: Quanbo Zou, Uppili Sridhar, Yu Chen, Tit Meng Lim, Emmanuel Selvanayagam Zachariah, Tie Yan
  • Publication number: 20020173032
    Abstract: The invention describes a thermal cycler which permits simultaneous treatment of multiple individual samples in independent thermal protocols, so as to implement large numbers of DNA experiments simultaneously in a short time. The chamber is thermally isolated from its surroundings, heat flow in and out of the unit being limited to one or two specific heat transfer areas. All heating elements are located within these transfer areas and at least one temperature sensor per heating element is positioned close by. Fluid bearing channels that facilitate sending fluid into, and removing fluid from, the chamber are provided. The chambers may be manufactured as integrated arrays to form units in which each cycler chamber has independent temperature and fluid flow control Two embodiments of the invention are described together with a process for manufacturing them.
    Type: Application
    Filed: July 3, 2002
    Publication date: November 21, 2002
    Inventors: Quanbo Zou, Uppili Sridhar, Yu Chen, Tit Meng Lim, Emmanuel Selvanayagam Zachariah, Tie Yan
  • Publication number: 20020115200
    Abstract: The invention describes a thermal cycler which permits simultaneous treatment of multiple individual samples in independent thermal protocols, so as to implement large numbers of DNA experiments simultaneously in a short time. The chamber is thermally isolated from its surroundings, heat flow in and out of the unit being limited to one or two specific heat transfer areas. All heating elements are located within these transfer areas and at least one temperature sensor per heating element is positioned close by. Fluid bearing channels that facilitate sending fluid into, and removing fluid from, the chamber are provided. The chambers may be manufactured as integrated arrays to form units in which each cycler chamber has independent temperature and fluid flow control. Two embodiments of the invention are described together with a process for manufacturing them.
    Type: Application
    Filed: February 16, 2001
    Publication date: August 22, 2002
    Applicant: Institute of Microelectronics
    Inventors: Quanbo Zou, Uppili Sridhar, Yu Chen, Tit Meng Lim, Emmanuel Selvanayagam Zachariah, Tie Yan
  • Patent number: 6432695
    Abstract: The invention describes a thermal cycler which permits simultaneous treatment of multiple individual samples in independent thermal protocols, so as to implement large numbers of DNA experiments simultaneously in a short time. The chamber is thermally isolated from its surroundings, heat flow in and out of the unit being limited to one or two specific heat transfer areas. All heating elements are located within these transfer areas and at least one temperature sensor per heating element is positioned close by. Fluid bearing channels that facilitate sending fluid into, and removing fluid from, the chamber are provided. The chambers may be manufactured as integrated arrays to form units in which each cycler chamber has independent temperature and fluid flow control. Two embodiments of the invention are described together with a process for manufacturing them.
    Type: Grant
    Filed: February 16, 2001
    Date of Patent: August 13, 2002
    Assignee: Institute of Microelectronics
    Inventors: Quanbo Zou, Uppili Sridhar, Yu Chen, Tit Meng Lim, Emmanuel Selvanayagam Zachariah, Tie Yan