Patents by Inventor Tobias Brengartner

Tobias Brengartner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10895489
    Abstract: The present disclosure includes a method for monitoring the condition of a component of an electromechanical resonator having a piezoelectrical element which can be excited to mechanical vibration using an electrical excitation signal and the mechanical vibrations of which can be received in the form of an incoming electrical signal. The method steps performed at a first point and a second point in time, including determining an amplification factor of the electromechanical resonator, determining a mechanical quality resonator, and establishing an electromechanical efficiency resonator at least from the amplification factor and the mechanical quality. A change over time in the electromechanical efficiency is calculated from the first point to the second point in time, the change over time in the electromechanical efficiency is compared with a pre-definable threshold, and a condition indicator is determined from the comparison.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: January 19, 2021
    Assignee: Endress+Hauser SE+Co. KG
    Inventors: Tobias Brengartner, Manuel Sautermeister
  • Publication number: 20200340896
    Abstract: The present invention relates to an apparatus (1) for determining and/or monitoring at least one process variable of a medium (2) in a containment (3), comprising a first oscillatory element (11a) and a second oscillatory element (11b), a first driving/receiving unit (12a) and a second driving/receiving unit (12b), and an electronics (6), wherein the first driving/receiving unit (12a) is embodied to excite the first oscillatory element (11a) by means of a first electrical excitation signal (UE1) to execute mechanical oscillations, and to receive the mechanical oscillations of the first oscillatory element (11a) and to convert such into a first electrical, received signal (UR1), wherein the second driving/receiving unit (12b) is embodied to excite the second oscillatory element (11b) by means of a second electrical excitation signal (UE2) to execute mechanical oscillations, and to receive the mechanical oscillations of the second oscillatory element (11b) and to convert such into a second electrical, received
    Type: Application
    Filed: November 14, 2018
    Publication date: October 29, 2020
    Inventors: Benjamin Mack, Tobias Brengartner
  • Publication number: 20200125974
    Abstract: The present disclosure relates to a method for determining at least one process variable of a medium, including steps of recording a sensor signal from a field device and determining a selected model from a set of at least two different models by means of a classifier. Each of the models is used for determining the process variable based at least on the sensor signal. The classifier is designed to select the selected model. The method also includes a step of determining the process variable based at least on the selected model and the sensor signal.
    Type: Application
    Filed: October 15, 2019
    Publication date: April 23, 2020
    Inventors: Thomas Alber, Dieter Waldhauser, Philipp Leufke, Markus Kilian, Tobias Brengartner, Sergey Lopatin, Rebecca Page, Ruediger Frank
  • Publication number: 20200124461
    Abstract: The present disclosure relates to a method for determining at least one process variable of a medium. The method includes steps of recording a first value for the process variable by means of a first method for determining the process variable and recording a second value for the process variable by means of a second method for determining the process variable. The method also includes steps of selecting at least one of the detected values for the process variable by means of a classifier and outputting the selected value for the process variable. The present disclosure further relates to a computer program designed for executing a method according to the present disclosure, and to a computer program product having a computer program according to the present disclosure.
    Type: Application
    Filed: October 16, 2019
    Publication date: April 23, 2020
    Inventors: Sergey Lopatin, Dieter Waldhauser, Thomas Alber, Philipp Leufke, Markus Kilian, Tobias Brengartner, Rebecca Page
  • Patent number: 10571380
    Abstract: Vibronic sensor and method of operation for monitoring the density and/or the viscosity of a medium in a container, comprising a mechanically oscillatable unit, a driving/receiving unit and an electronics unit, wherein the driving/receiving unit is embodied, using an electrical exciter signal, to excite the mechanically oscillatable unit to execute mechanical oscillations, and to receive the mechanical oscillations and to convert them into an electrical, received signal, wherein the electronics unit is embodied to produce the exciter signal such that a predeterminable phase shift is present between the exciter signal and received signal, wherein the electronics unit is embodied to set a first predeterminable phase shift and a second predeterminable phase shift, and to ascertain a first frequency and a second frequency corresponding to the predeterminable phase shifts, and to determine from the two frequencies the density and/or the viscosity of the medium using a first and/or second analytical formula.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: February 25, 2020
    Assignee: Endress+Hauser SE+Co. KG
    Inventor: Tobias Brengartner
  • Publication number: 20190368914
    Abstract: The invention relates to a compensation device for the compensation of a phase shift caused a component of an electronic system unit of a vibronic sensor. The compensation device includes a bridging unit for the electrical bridging of at least the electromechanical converter; a signal generator for generating a test excitation signal; a phase detection unit for determining the phase shift between the test excitation signal and a test receive signal that passes through the bridging unit and the component of the electronic system unit; and a computer unit which determines a phase compensation instruction from the first phase shift.
    Type: Application
    Filed: September 11, 2017
    Publication date: December 5, 2019
    Inventors: Tobias Brengartner, Manuel Sautermeister, Romuald Girardey
  • Publication number: 20190339107
    Abstract: The present invention relates to a vibronic sensor for determining a process variable of a medium in a containment, comprising a mechanically oscillatable unit, a driving/receiving unit and an electronics unit having an adaptive filter. The present invention relates also to a method for operating the sensor. The electronics unit is embodied alternately to execute a first operating mode and a second operating mode. The driving/receiving unit is embodied during the first operating mode to excite the oscillatable unit using an electrical excitation signal. During the second operating mode, the exciting of the oscillatable unit is interrupted and the oscillations of the oscillatable unit are received and transduced into an electrical, received signal. At least one filter characteristic of the adaptive filter is set such that a predeterminable phase shift is present between the excitation signal and the received signal, and the process variable is determined from the received signal.
    Type: Application
    Filed: May 17, 2017
    Publication date: November 7, 2019
    Inventors: Sascha D'Angelico, Raphael Kuhnen, Tobias Brengartner, Izabella Sandor
  • Patent number: 10429286
    Abstract: A vibronic sensor for determining and/or monitoring at least one process variable of a medium in a container. The sensor at least comprising: a unit which can oscillate mechanically; a driving/receiving unit; and an electronic unit. The driving/receiving unit is designed to excite, by an electrical excitation signal, mechanical oscillations in the unit which can oscillate mechanically and is designed to receive the mechanical oscillations of the unit which can oscillate mechanically, and to convert the mechanical oscillations into an electrical receiving signal. The electronic unit is designed to generate the excitation signal on the basis of the receiving signal and to determine that at least one process variable from the receiving unit. The electronic unit comprises at least one adaptive filter; and the electronic unit is designed to set the filter characteristic of the adaptive filter in such a way that there is a target phase shift between the excitation signal and the receiving signal.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: October 1, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Tobias Brengartner, Sascha D'Angelico
  • Patent number: 10401215
    Abstract: A method to determine and/or monitor at least one process variable of a medium with at least one vibration-capable unit. The vibration-capable unit is excited to mechanical vibrations by means of an electrical excitation signal of an adjustable frequency; wherein the mechanical vibrations are transduced into a received electrical signal, which is characterized at least by a frequency and/or a phase and/or an amplitude. The excitation signal is generated based on the received signal; wherein the voltage values of the received signal are sampled at specified predetermined points in time, starting from the excitation signal. The real part and the imaginary part of the received signal are determined from the sampled voltage values of the received signal by means of a Goertzel algorithm; wherein at least one Goertzel coefficient—in particular the number of the sample values and/or an operating frequency and/or a sample frequency—is provided for performing the Goertzel algorithm.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 3, 2019
    Assignee: ENDRESS+HAUSER SE+CO.KG
    Inventors: Tobias Brengartner, Lukas Gersbacher
  • Publication number: 20190242739
    Abstract: The present disclosure includes a method for monitoring the condition of a component of an electromechanical resonator having a piezoelectrical element which can be excited to mechanical vibration using an electrical excitation signal and the mechanical vibrations of which can be received in the form of an incoming electrical signal. The method steps performed at a first point and a second point in time, including determining an amplification factor of the electromechanical resonator, determining a mechanical quality resonator, and establishing an electromechanical efficiency resonator at least from the amplification factor and the mechanical quality. A change over time in the electromechanical efficiency is calculated from the first point to the second point in time, the change over time in the electromechanical efficiency is compared with a pre-definable threshold, and a condition indicator is determined from the comparison.
    Type: Application
    Filed: September 11, 2017
    Publication date: August 8, 2019
    Inventors: Tobias Brengartner, Manuel Sautermeister
  • Publication number: 20190226900
    Abstract: The present disclosure relates to a method and corresponding sensor for determining density and/or viscosity of a medium using a vibronic sensor. An oscillatable unit is excited using an electrical excitation signal to execute mechanical oscillations, and the mechanical oscillations of the mechanically oscillatable unit are received and transduced into an electrical, received signal. The excitation signal is produced based on the received signal such that at least one predeterminable phase shift is present between the excitation signal and the received signal, wherein a frequency of the excitation signal is determined from the received signal at the predeterminable phase shift. A damping and/or a variable dependent on the damping are/is determined from the received signal at the predeterminable phase shift. From the damping and/or the variable dependent on the damping and from the frequency of the excitation signal, the density and/or the viscosity of the medium are/is ascertained.
    Type: Application
    Filed: June 26, 2017
    Publication date: July 25, 2019
    Applicant: Endress+Hauser SE+Co. KG
    Inventors: Tobias Brengartner, Manuel Sautermeister, Sascha D'Angelico
  • Publication number: 20190187071
    Abstract: The present disclosure relates to a measuring device for measuring a dielectric constant of fill substances in containers. The measuring device includes: a transmitting circuit for transmitting a first electromagnetic high-frequency signal and a second electromagnetic high-frequency signal; a receiving circuit for receiving the two high-frequency signals; and an evaluation circuit to ascertain a first phase shift between the transmitting and the receiving of the first high-frequency signal, to ascertain a second phase shift between the transmitting and the receiving of the second high-frequency signal, and to ascertain an amplitude of one of the received high-frequency signals. Based on these three values, the dielectric constant is determined. By determining phase shift at different frequencies, it is possible according to the present disclosure, especially in the case of solid-type fill substances, to determine their dielectric constant uncorrupted, thus without influence of air inclusions or moisture.
    Type: Application
    Filed: December 18, 2018
    Publication date: June 20, 2019
    Inventors: Thomas Blödt, Tobias Brengartner
  • Publication number: 20190003874
    Abstract: An apparatus and a method for determining and/or monitoring at least one process variable of a medium in a container, comprising: a mechanically oscillatable unit, a driving/receiving unit for exciting the mechanically oscillatable unit to execute mechanical oscillations by means of an electrical exciting signal and for receiving and transducing mechanical oscillations into an electrical, received signal, an electronics unit, which electronics unit is embodied, to produce the exciting signal starting from the received signal, to set a predeterminable phase shift (??) between the exciting signal and the received signal, and from the received signal, to determine and/or to monitor the at least one process variable.
    Type: Application
    Filed: June 22, 2016
    Publication date: January 3, 2019
    Inventors: Romuald Girardey, Manuel Sautermeister, Tobias Brengartner
  • Patent number: 10078005
    Abstract: A method for calibration or adjustment of any oscillatable unit with a mathematical model describing the oscillatable unit, wherein the oscillatable unit interacts with a medium located in a container, comprising the steps as follows: exciting the oscillatable unit via a real input signal to execute oscillations; the real output signal of the oscillatable unit is ascertained; the real output signal is digitized and a real output sequence is produced; the real input signal is digitized and a digital input sequence is produced; the digital input sequence is fed to a function block, which provides the mathematical model of the oscillatable unit in interaction with the medium. The mathematical model is defined by at least two sensor-specific variables; a virtual output sequence is produced via the mathematical model.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: September 18, 2018
    Assignee: ENDRESS + HAUSER GMBH + CO. KG
    Inventors: Tobias Brengartner, Gerd Bechtel, Sascha D'Angelico
  • Patent number: 9995617
    Abstract: An apparatus for determining and/or monitoring at least one process variable of a medium in a container, comprising: a mechanically oscillatable unit; an electrodynamic transducer unit for exciting the oscillatable unit by means of an exciter signal to execute mechanical oscillations and for receiving the mechanical oscillations of the oscillatable unit and transducing them into an electrical, received signal; and an electronics unit, which at least determines and/or monitors the process variable based on the received signal. The invention is distinguished by features including that the electrodynamic transducer unit has exactly one coil, which serves both as a drive element as well as also a receiving element.
    Type: Grant
    Filed: November 22, 2012
    Date of Patent: June 12, 2018
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Alexander Muller, Sergej Lopatin, Tobias Brengartner
  • Patent number: 9971855
    Abstract: A method for determining and or monitoring at least one process- and/or system specific parameter in automation technology. An oscillatable system is provided, which interacts with a medium located in a container, wherein the oscillatable system is excited to oscillate via a real input signal, wherein the real output signal of the oscillatable system is ascertained, wherein the real output signal is digitized and a real output sequence yu(k) is produced. The real input signal is digitized and a digital input sequence (u(k)) is produced, wherein the digital input sequence (u(k)) is fed to a function block (model), which provides at least one mathematical model of the oscillatable system in interaction with the medium. The mathematical model is defined by a number of process- and/or system specific parameters, wherein via the mathematical model a virtual output sequence (ym(k)) is produced, wherein the virtual output sequence ym(k) is compared with the real output sequence yu(k).
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: May 15, 2018
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Tobias Brengartner, Gerd Bechtel, Michael Siegel
  • Publication number: 20180031460
    Abstract: Vibronic sensor and method of operation for monitoring the density and/or the viscosity of a medium in a container, comprising a mechanically oscillatable unit, a driving/receiving unit and an electronics unit, wherein the driving/receiving unit is embodied, using an electrical exciter signal, to excite the mechanically oscillatable unit to execute mechanical oscillations, and to receive the mechanical oscillations and to convert them into an electrical, received signal, wherein the electronics unit is embodied to produce the exciter signal such that a predeterminable phase shift is present between the exciter signal and received signal, wherein the electronics unit is embodied to set a first predeterminable phase shift and a second predeterminable phase shift, and to ascertain a first frequency and a second frequency corresponding to the predeterminable phase shifts, and to determine from the two frequencies the density and/or the viscosity of the medium using a first and/or second analytical formula.
    Type: Application
    Filed: January 29, 2016
    Publication date: February 1, 2018
    Inventor: Tobias Brengartner
  • Publication number: 20170343459
    Abstract: A vibronic sensor for determining and/or monitoring at least one process variable of a medium in a container. The sensor at least comprising: a unit which can oscillate mechanically; a driving/receiving unit; and an electronic unit. The driving/receiving unit is designed to excite, by means of an electrical excitation signal, mechanical oscillations in the unit which can oscillate mechanically and is designed to receive the mechanical oscillations of the unit which can oscillate mechanically, and to convert them into an electrical receiving signal. The electronic unit is designed to generate the excitation signal on the basis of the receiving signal and to determine the at least one process variable from the receiving signal; The electronic unit comprises at least one adaptive filter; and the electronic unit is designed to set the filter characteristic of the adaptive filter in such a way that there is a target phase shift between the excitation signal and the receiving signal.
    Type: Application
    Filed: November 9, 2015
    Publication date: November 30, 2017
    Applicant: Endress + Hauser GmbH + Co.Kg
    Inventors: Tobias Brengartner, Sascha D'Angelico
  • Patent number: 9575035
    Abstract: A vibronic measuring device for determining at least one process variable of a medium. Included are: an oscillatable unit; a transmitting/receiving unit, which, by means of a transmission signal, excites the oscillatable unit to execute mechanical oscillations and receives the mechanical oscillations and converts such into an analog, electrical, received signal; and a control/evaluation unit (MC), which receives the analog, received signal, digitizes such and determines the process variable therefrom and which produces the transmission signal.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: February 21, 2017
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Martin Urban, Tobias Brengartner, Alexander Muller
  • Publication number: 20160188766
    Abstract: A method for determining and or monitoring at least one process- and/or system specific parameter in automation technology. An oscillatable system is provided, which interacts with a medium located in a container, wherein the oscillatable system is excited to oscillate via a real input signal, wherein the real output signal of the oscillatable system is ascertained, wherein the real output signal is digitized and a real output sequence yu(k) is produced. The real input signal is digitized and a digital input sequence (u(k)) is produced, wherein the digital input sequence (u(k)) is fed to a function block (model), which provides at least one mathematical model of the oscillatable system in interaction with the medium. The mathematical model is defined by a number of process- and/or system specific parameters, wherein via the mathematical model a virtual output sequence (ym(k)) is produced, wherein the virtual output sequence ym(k) is compared with the real output sequence yu(k).
    Type: Application
    Filed: December 6, 2013
    Publication date: June 30, 2016
    Applicant: Endress + Hauser GmbH + Co., KG
    Inventors: Tobias BRENGARTNER, Gerd BECHTEL, Michael SIEGEL