Patents by Inventor Tobias Frischmuth

Tobias Frischmuth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11161396
    Abstract: A multilayer arrangement for a flat glazing unit. The multilayer arrangement extends in a main plane and has at least one narrow side, wherein the multilayer arrangement has a functional layer, layer electrodes are arranged on surface sides of the functional layer, which surface sides are oriented parallel in relation to the main plane, the layer electrodes each have at least one contact-making surface which is oriented parallel in relation to the main plane and on which a respective common supply electrode, which is different from the respective layer electrode, is arranged along a respective contact-making edge, and the contact-making edges are each at least a subregion of the narrow side. The invention also makes provision for at least portions of the contact-making surfaces to at least partially overlap as seen perpendicularly in relation to the main plane and/or for the supply electrodes to each have a comb structure.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: November 2, 2021
    Assignee: CONTINENTAL AUTOMOTIVE GMBH
    Inventors: Tobias Frischmuth, Rene Hinterberger, Johannes Greil
  • Patent number: 11054713
    Abstract: The disclosure relates to a method for controlling an assembly comprising multiple switchable electrochromic individual panes, to set a transmittance individually in each case for these by a respective electrical actuation signal, wherein respective data of the state at the time of each individual pane are recorded by a control device and a configuration of the respective actuation signal is established in each case for each individual pane on the basis of the state data. The configurations of the actuation signals are thereby made to match one another in such a way that the individual panes have preferably the same transmittance value.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: July 6, 2021
    Assignee: Continental Automotive GmbH
    Inventors: Rene Hinterberger, Peter Gubesch, Tobias Frischmuth, Johannes Greil, Andreas Egger
  • Patent number: 10782585
    Abstract: The disclosure relates to a method for determining a temperature of a variable-transparency, switchable pane, which has a variable-transparency layer, which is arranged to switch said pane between two transparent electrically conductive contact layers, wherein, in the method, a control apparatus of the switchable pane applies an electrical voltage to at least one of the two contact layers and determines an electric current resulting in each case from the voltage. In this case, depending on the applied voltage and the current resulting in each case, a respective ohmic resistance value and/or a combination of electrical capacitance value and ohmic resistance value of the variable-transparency layer is determined and at least one temperature value is determined therefrom by a predetermined allocation rule.
    Type: Grant
    Filed: August 1, 2018
    Date of Patent: September 22, 2020
    Assignee: Continental Automotive GmbH
    Inventors: Rene Hinterberger, Peter Gubesch, Tobias Frischmuth, Johannes Greil
  • Patent number: 10710874
    Abstract: A micromechanical structure in accordance with various embodiments may include: a substrate; and a functional structure arranged at the substrate; wherein the functional structure includes a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region; and wherein at least a section of the functional region has an elastic modulus in the range from about 5 GPa to about 70 GPa.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: July 14, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Tobias Frischmuth, Guenter Denifl, Thomas Grille, Ursula Hedenig, Markus Kahn, Daniel Maurer, Ulrich Schmid, Michael Schneider
  • Patent number: 10488729
    Abstract: A planar light modulation apparatus includes first and second planar, transparent substrates, each with a transparent, electrically conductive coating. The coatings are connectable to an electrical voltage source. A light modulation element in the space between the coatings includes a first dielectric material with a predefinable concentration of particles dispersed therein. While the particles are randomly arranged in the first dielectric material they render the light modulation element substantially nontransmissive for light impinging thereon or cause the light modulation element to appear opaque. Up to about 25° C. or higher and at atmospheric pressure, the first dielectric material is solid or has a viscosity that does not allow the particles to change their alignment based on Brownian motion. The material can be heated with a heating device to lower the viscosity and to allow the particles to alter their alignment in the first dielectric material on the basis of Brownian motion.
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: November 26, 2019
    Assignee: Continental Automotive GmbH
    Inventors: Tobias Frischmuth, Rene Hinterberger, Peter Gubesch, Johannes Greil
  • Publication number: 20190217687
    Abstract: A multilayer arrangement for a flat glazing unit. The multilayer arrangement extends in a main plane and has at least one narrow side, wherein the multilayer arrangement has a functional layer, layer electrodes are arranged on surface sides of the functional layer, which surface sides are oriented parallel in relation to the main plane, the layer electrodes each have at least one contact-making surface which is oriented parallel in relation to the main plane and on which a respective common supply electrode, which is different from the respective layer electrode, is arranged along a respective contact-making edge, and the contact-making edges are each at least a subregion of the narrow side. The invention also makes provision for at least portions of the contact-making surfaces to at least partially overlap as seen perpendicularly in relation to the main plane and/or for the supply electrodes to each have a comb structure.
    Type: Application
    Filed: January 8, 2019
    Publication date: July 18, 2019
    Inventors: Tobias Frischmuth, Rene Hinterberger, Johannes Greil
  • Publication number: 20190049758
    Abstract: A planar light modulation apparatus includes first and second planar, transparent substrates, each with a transparent, electrically conductive coating. The coatings are connectable to an electrical voltage source. A light modulation element in the space between the coatings includes a first dielectric material with a predefinable concentration of particles dispersed therein. While the particles are randomly arranged in the first dielectric material they render the light modulation element substantially nontransmissive for light impinging thereon or cause the light modulation element to appear opaque. Up to about 25° C. or higher and at atmospheric pressure, the first dielectric material is solid or has a viscosity that does not allow the particles to change their alignment based on Brownian motion. The material can be heated with a heating device to lower the viscosity and to allow the particles to alter their alignment in the first dielectric material on the basis of Brownian motion.
    Type: Application
    Filed: August 13, 2018
    Publication date: February 14, 2019
    Inventors: TOBIAS FRISCHMUTH, RENE HINTERBERGER, PETER GUBESCH, JOHANNES GREIL
  • Publication number: 20190041714
    Abstract: The disclosure relates to a method for determining a temperature of a variable-transparency, switchable pane, which has a variable-transparency layer, which is arranged to switch said pane between two transparent electrically conductive contact layers, wherein, in the method, a control apparatus of the switchable pane applies an electrical voltage to at least one of the two contact layers and determines an electric current resulting in each case from the voltage. In this case, depending on the applied voltage and the current resulting in each case, a respective ohmic resistance value and/or a combination of electrical capacitance value and ohmic resistance value of the variable-transparency layer is determined and at least one temperature value is determined therefrom by a predetermined allocation rule.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 7, 2019
    Inventors: Rene Hinterberger, Peter Gubesch, Tobias Frischmuth, Johannes Greil
  • Publication number: 20190041715
    Abstract: The disclosure relates to a method for controlling an assembly comprising multiple switchable electrochromic individual panes, to set a transmittance individually in each case for these by a respective electrical actuation signal, wherein respective data of the state at the time of each individual pane are recorded by a control device and a configuration of the respective actuation signal is established in each case for each individual pane on the basis of the state data. The configurations of the actuation signals are thereby made to match one another in such a way that the individual panes have preferably the same transmittance value.
    Type: Application
    Filed: August 1, 2018
    Publication date: February 7, 2019
    Inventors: Rene Hinterberger, Peter Gubesch, Tobias Frischmuth, Johannes Greil, Andreas Egger
  • Patent number: 10106398
    Abstract: A micromechanical structure comprises a substrate and a functional structure arranged at the substrate. The functional structure comprises a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region. The functional structure comprises a carbon layer arrangement, wherein a basis material of the carbon layer arrangement is a carbon material.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: October 23, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ulrich Schmid, Tobias Frischmuth, Peter Irsigler, Thomas Grille, Daniel Maurer, Ursula Hedenig, Markus Kahn, Guenter Denifl, Michael Schneider
  • Patent number: 10081533
    Abstract: A micromechanical structure includes a substrate and a functional structure arranged at the substrate. The functional structure has a functional region configured to deflect with respect to the substrate responsive to a force acting on the functional region. The functional structure includes a conductive base layer and a functional structure comprising a stiffening structure having a stiffening structure material arranged at the conductive base layer and only partially covering the conductive base layer at the functional region. The stiffening structure material includes a silicon material and at least a carbon material.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 25, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Ulrich Schmid, Tobias Frischmuth, Peter Irsigler, Thomas Grille, Daniel Maurer, Ursula Hedenig, Markus Kahn, Günter Denifl
  • Patent number: 9939331
    Abstract: Various embodiments disclosed herein include a capacitive thermometer including a deflectable membrane and a sense electrode. The deflectable membrane is configured to adjust a capacitive value based on a temperature of the deflectable membrane.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: April 10, 2018
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Jonathan Silvano de Sousa, Tobias Frischmuth, Peter Irsigler, Ulrich Schmid, Thomas Grille, Ursula Hedenig, Sylvicley Figueira da Silva
  • Publication number: 20180002167
    Abstract: A micromechanical structure in accordance with various embodiments may include: a substrate; and a functional structure arranged at the substrate; wherein the functional structure includes a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region; and wherein at least a section of the functional region has an elastic modulus in the range from about 5 GPa to about 70 GPa.
    Type: Application
    Filed: June 29, 2017
    Publication date: January 4, 2018
    Inventors: Tobias Frischmuth, Guenter Denifl, Thomas Grille, Ursula Hedenig, Markus Kahn, Daniel Maurer, Ulrich Schmid, Michael Schneider
  • Publication number: 20160353210
    Abstract: A micromechanical structure comprises a substrate and a functional structure arranged at the substrate. The functional structure comprises a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region. The functional structure comprises a carbon layer arrangement, wherein a basis material of the carbon layer arrangement is a carbon material.
    Type: Application
    Filed: May 28, 2015
    Publication date: December 1, 2016
    Inventors: Ulrich Schmid, Tobias Frischmuth, Peter Irsigler, Thomas Grille, Daniel Maurer, Ursula Hedenig, Markus Kahn, Guenter Denifl, Michael Schneider
  • Publication number: 20160031701
    Abstract: A micromechanical structure includes a substrate and a functional structure arranged at the substrate. The functional structure has a functional region configured to deflect with respect to the substrate responsive to a force acting on the functional region. The functional structure includes a conductive base layer and a functional structure comprising a stiffening structure having a stiffening structure material arranged at the conductive base layer and only partially covering the conductive base layer at the functional region. The stiffening structure material includes a silicon material and at least a carbon material.
    Type: Application
    Filed: July 31, 2014
    Publication date: February 4, 2016
    Inventors: Ulrich Schmid, Tobias Frischmuth, Peter Irsigler, Thomas Grille, Daniel Maurer, Ursula Hedenig, Markus Kahn, Günter Denifl
  • Patent number: 9212045
    Abstract: A micro mechanical structure includes a substrate and a functional structure arranged at the substrate. The functional structure includes a functional region which is deflectable with respect to the substrate responsive to a force acting on the functional region. The functional structure further includes a conductive base layer having a conductive base layer material. The conductive base layer material includes sectionally in a stiffening section a carbon material such that a carbon concentration of the carbon material in the conductive base layer material is at least 1014 per cubic cm and at least higher by a factor of 103 than in the conductive base layer material adjacent to the stiffening section.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: December 15, 2015
    Assignee: Infineon Technologies AG
    Inventors: Ulrich Schmid, Tobias Frischmuth, Peter Irsigler, Thomas Grille, Daniel Maurer, Ursula Hedenig, Markus Kahn, Guenter Denifl
  • Publication number: 20150338285
    Abstract: Various embodiments disclosed herein include a capacitive thermometer including a deflectable membrane and a sense electrode. The deflectable membrane is configured to adjust a capacitive value based on a temperature of the deflectable membrane.
    Type: Application
    Filed: May 21, 2014
    Publication date: November 26, 2015
    Applicant: Infineon Technologies AG
    Inventors: Jonathan Silvano de Sousa, Tobias Frischmuth, Peter Irsigler, Ulrich Schmid, Thomas Grille, Ursula Hedenig, Sylvicley Figueira da Silva